A Multiscale Spatial Transformer U-Net for Simultaneously Automatic Reorientation and Segmentation of 3-D Nuclear Cardiac Images

分割 基本事实 人工智能 计算机科学 正电子发射断层摄影术 Sørensen–骰子系数 图像配准 核医学 模式识别(心理学) 计算机视觉 图像分割 医学 图像(数学)
作者
Yangfan Ni,Duo Zhang,Gege Ma,Fan Rao,Yuanfeng Wu,Lijun Lu,Zhongke Huang,Wentao Zhu
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:8 (6): 632-645 被引量:2
标识
DOI:10.1109/trpms.2024.3382318
摘要

Accurate reorientation and segmentation of the left ventricular (LV) is essential for the quantitative analysis of myocardial perfusion imaging (MPI). This study proposes an end-to-end model, named as Multi-Scale Spatial Transformer UNet (MS-ST-UNet), which involves the multi-scale spatial transformer network (MSSTN) and multi-scale UNet (MSUNet) modules to perform simultaneous reorientation and segmentation of LV region from nuclear cardiac images. The multi-scale sampler produces images with varying resolutions, while scale transformer (ST) blocks are employed to align the scales of features. The proposed method is trained and tested using two different nuclear cardiac image modalities: 13N-ammonia Positron Emission Tomography (PET) and 99mTc-sestamibi Single Photon Emission Computed Tomography (SPECT). MS-ST-UNet attains Dice Similarity Coefficient (DSC) scores of 91.48% and 94.81% for PET LV myocardium (LV-MY) and SPECT LV-MY, respectively. Additionally, the mean square error (MSE) between predicted rigid registration parameters and ground truth decreases to below 1.4×10-2. The experimental findings indicate that the MS-ST-UNet yields notably reduced registration errors and more precise boundary detection for the LV structure compared to existing methods. This joint learning framework promotes mutual enhancement between reorientation and segmentation tasks, leading to cutting edge performance and an efficient image processing workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分10
刚刚
小蘑菇应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
2秒前
坤儿完成签到,获得积分10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
聪慧芷巧应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
桃子完成签到,获得积分10
3秒前
云栖完成签到,获得积分10
6秒前
XF发布了新的文献求助10
6秒前
鼓得文完成签到 ,获得积分10
7秒前
Lucas应助虞美人采纳,获得10
8秒前
丘比特应助xzy998采纳,获得200
9秒前
wws完成签到,获得积分10
9秒前
西瓜投手完成签到,获得积分10
11秒前
11秒前
kk完成签到,获得积分10
11秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
Chris学长完成签到,获得积分10
15秒前
15秒前
16秒前
zz发布了新的文献求助10
16秒前
JamesPei应助Jake采纳,获得10
18秒前
故意的鲜花完成签到,获得积分20
19秒前
王肖发布了新的文献求助10
19秒前
汉堡包应助Murphy采纳,获得10
20秒前
21秒前
辉辉发布了新的文献求助10
21秒前
Tangyartie完成签到 ,获得积分10
22秒前
江峰发布了新的文献求助10
22秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209370
求助须知:如何正确求助?哪些是违规求助? 3743426
关于积分的说明 11783245
捐赠科研通 3413275
什么是DOI,文献DOI怎么找? 1872961
邀请新用户注册赠送积分活动 927564
科研通“疑难数据库(出版商)”最低求助积分说明 837133