Group sparse autoencoder

自编码 过度拟合 人工智能 模式识别(心理学) 特征学习 计算机科学 MNIST数据库 深度学习 稀疏逼近 特征提取 正规化(语言学) 机器学习 人工神经网络
作者
Anush Sankaran,Mayank Vatsa,Richa Singh,Angshul Majumdar
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:60: 64-74 被引量:50
标识
DOI:10.1016/j.imavis.2017.01.005
摘要

Unsupervised feature extraction is gaining a lot of research attention following its success to represent any kind of noisy data. Owing to the presence of a lot of training parameters, these feature learning models are prone to overfitting. Different regularization methods have been explored in the literature to avoid overfitting in deep learning models. In this research, we consider autoencoder as the feature learning architecture and propose ℓ2,1-norm based regularization to improve its learning capacity, called as Group Sparse AutoEncoder (GSAE). ℓ2,1-norm is based on the postulate that the features from the same class will have a common sparsity pattern in the feature space. We present the learning algorithm for group sparse encoding using majorization–minimization approach. The performance of the proposed algorithm is also studied on three baseline image datasets: MNIST, CIFAR-10, and SVHN. Further, using GSAE, we propose a novel deep learning based image representation for minutia detection from latent fingerprints. Latent fingerprints contain only a partial finger region, very noisy ridge patterns, and depending on the surface it is deposited, contain significant background noise. We formulate the problem of minutia extraction as a two-class classification problem and learn the descriptor using the novel formulation of GSAE. Experimental results on two publicly available latent fingerprint datasets show that the proposed algorithm yields state-of-the-art results for automated minutia extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
物质尽头完成签到 ,获得积分10
刚刚
Jenny发布了新的文献求助10
刚刚
魔幻芒果发布了新的文献求助10
1秒前
CipherSage应助风倾蓝白采纳,获得10
1秒前
1秒前
山川无恙完成签到,获得积分20
2秒前
犹豫的可冥完成签到,获得积分10
2秒前
FJ发布了新的文献求助10
3秒前
3秒前
苏州河发布了新的文献求助10
4秒前
4秒前
4秒前
NexusExplorer应助生动凝旋采纳,获得10
5秒前
shisui发布了新的文献求助20
6秒前
天天快乐应助xiaoguoxiaoguo采纳,获得10
8秒前
9秒前
ll应助魔幻芒果采纳,获得10
9秒前
山川无恙发布了新的文献求助30
9秒前
9秒前
10秒前
七只狐狸发布了新的文献求助30
10秒前
wu发布了新的文献求助10
11秒前
甜蜜的雁凡完成签到,获得积分20
12秒前
14秒前
1177发布了新的文献求助10
14秒前
小平发布了新的文献求助10
15秒前
华仔应助tesla采纳,获得10
17秒前
汉堡包应助SHI采纳,获得10
19秒前
20秒前
胡一刀发布了新的文献求助10
21秒前
21秒前
21秒前
lsx发布了新的文献求助30
22秒前
114514发布了新的文献求助20
23秒前
Liu丰发布了新的文献求助10
24秒前
研友_VZG7GZ应助Ag666采纳,获得10
25秒前
Nicky发布了新的文献求助10
26秒前
悟格发布了新的文献求助30
26秒前
田様应助忧伤的宝马采纳,获得10
26秒前
Hello应助前进的光采纳,获得30
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794706
求助须知:如何正确求助?哪些是违规求助? 3339486
关于积分的说明 10296205
捐赠科研通 3056183
什么是DOI,文献DOI怎么找? 1676910
邀请新用户注册赠送积分活动 804935
科研通“疑难数据库(出版商)”最低求助积分说明 762226