串联
钙钛矿(结构)
材料科学
光电子学
光伏系统
单层
纳米技术
太阳能电池
能量转换效率
钙钛矿太阳能电池
太阳能
电极
氧化物
表面能
图层(电子)
混合太阳能电池
电压
等离子太阳电池
能量转换
光伏
氧化铝
离子键合
工程物理
量子点太阳电池
导电体
作者
Liao Chang,The Duong,Viqar Uddin Ahmad,Hualin Zhan,Anh Dinh Bui,Jana-Isabelle Polzin,Armin Richter,Gabriel Bartholazzi,Keqing Huang,Zhongshu Yang,Wei Wang,Yihui Hou,Li Li,Qian Cui,Rabin Basnet,Jianfei Yang,Hong Lin,Guozheng Du,Khoa Nguyen,Dang-Thuan Nguyen
标识
DOI:10.1007/s40820-025-01959-y
摘要
Abstract Recent progress in inverted perovskite solar cells (iPSCs) highlights the critical role of interface engineering between the charge transport layer and perovskite. Self-assembled monolayers (SAM) on transparent conductive oxide electrodes serve effectively as hole transport layers, though challenges such as energy mismatches and surface inhomogeneities remain. Here, a blended self-assembled monolayer of (2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz) and (4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl)phosphonic acid (Me-4PACz) is developed, offering improved surface potential uniformity and interfacial energy alignment compared to individual SAMs. Interactions between the SAMs and ionic species are investigated with simulation analysis conducted, revealing the elimination of interfacial energy barriers through precise energy-level tuning. This strategy enables wide-bandgap (1.67 eV) perovskite solar cells with inverted structures with over 24% efficiency, an open-circuit voltage ( V oc ) of 1.268 V, and a certified fill factor (FF) of 86.8%, leading to a certified efficiency of 23.42%. The approach also enables high-efficiency semi-transparent devices and a mechanically stacked four-terminal perovskite/silicon tandem solar cell reaching 30.97% efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI