热失控
阴极
材料科学
热膨胀
热的
衍射
负热膨胀
氧化物
相变
相(物质)
电化学
电池(电)
化学物理
格子(音乐)
氧气
光谱学
吸收光谱法
过渡金属
氧化态
电流密度
功率密度
化学工程
分析化学(期刊)
结构变化
吸收(声学)
还原(数学)
热处理
析氧
热稳定性
作者
Jilu Zhang,Qin Wang,Xinyue Zhai,Guanjie Yan,Bo Wang,Zhongzhu liu,Jiayong Chen,Luanna S. Parreira,Ruochen Xu,Robson Souza Monteiro,Sylvio Indris,Xiaoping Ouyang,Weibo Hua
标识
DOI:10.1002/anie.202525724
摘要
Abstract The demand for high energy density in the field of Li‐ion batteries has intensified interest in lithium‐rich Mn‐based layered oxide cathodes (LRLOs) owing to their high capacity and low cost. Nevertheless, the thermal runaway becomes an urgent concern because of the high‐voltage operation (up to 4.8 V), and the structural evolution mechanism of delithiated LRLOs during heating remains unclear. Here, we combine in situ high‐temperature X‐ray diffraction and absorption spectroscopy to systematically investigate the structural and chemical evolution of Li 1.2 Ni 0.2 Mn 0.6 O 2 (LLNMO) across distinct charge–discharge states. Interestingly, Ni is the first element to undergo thermally induced reduction in the charged state of LLNMO. With further increasing the temperature, Mn reduction sets in, coinciding with extensive lattice oxygen loss, and a phase transition from layered to disordered layered or Li‐containing rock‐salt‐type phase occurs. More intriguingly, after the initial electrochemical cycle, LLNMO exhibits negative thermal expansion at low temperatures below 200 °C, which are attributed to the cycling‐induced microstrain accumulation and long‐range structural ordering. These findings provide a mechanistic insight into the state‐of‐charge‐dependent thermal behavior of Li‐rich layered materials and offer guidelines for designing safer, high‐capacity battery materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI