Two‐Stream Reinforcement Ensemble Framework for Agricultural Commodity Prices Forecasting Using Textual Data

计算机科学 期货合约 强化学习 计量经济学 变量(数学) 机器学习 人工智能 时间序列 独立性(概率论) 索引(排版) 集合预报 多元统计 商品 集成学习 光学(聚焦) 系列(地层学) 情绪分析 预测建模 数据挖掘 市场数据 对比度(视觉) 合成数据
作者
Lin Wang,Lean Yu,Wuyue An
出处
期刊:Journal of Forecasting [Wiley]
卷期号:44 (8): 2386-2404
标识
DOI:10.1002/for.70015
摘要

ABSTRACT Influenced by various complex factors, the price series of agricultural futures exhibit nonstationarity. Existing research often presumes that the relationship between inputs and outputs remains stable throughout the training process. This assumption makes it challenging to dynamically adjust the weights of various models based on data characteristics. Furthermore, existing studies focus only on modeling variable dependencies, overlooking the impact of variable independence on model robustness. Therefore, this paper proposes a two‐stream ensemble forecasting model that integrates a dynamic sentiment index. Initially, ChineseBERT and textCNN are employed to classify the sentiment of news texts, calculating the sentiment scores. Subsequently, weight factors are designed based on daily price fluctuations to adjust these sentiment scores, ensuring they accurately reflect the impact of news sentiment on market prices. In the model construction phase, multivariate time series data are input into two distinct models: one model is dedicated to capturing temporal dependencies, while the other focuses on capturing intervariable dependencies, thereby providing diverse yet complementary predictive insights. An online convex optimization approach is then utilized to learn the optimal combination weights. During the testing phase, reinforcement learning is applied to dynamically adjust the prediction weights of these two models. The effectiveness of the proposed methods is validated using soybean and corn futures prices. Experimental results demonstrate that the proposed two‐stage sentiment index (TPSI) exhibits strong predictive capability for agricultural futures prices, achieving high accuracy in short‐term and medium‐term price forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
专注钢笔发布了新的文献求助10
3秒前
科研通AI2S应助张豪采纳,获得10
3秒前
5秒前
7秒前
且听发布了新的文献求助10
8秒前
9秒前
张国栋发布了新的文献求助10
9秒前
华仔应助邻居吃花椒采纳,获得10
9秒前
10秒前
zhaoxiaodao发布了新的文献求助10
10秒前
烦烦烦发布了新的文献求助10
13秒前
科研通AI6应助于富强采纳,获得10
13秒前
hardhardwork完成签到,获得积分10
14秒前
活力友容完成签到,获得积分10
14秒前
苒苒发布了新的文献求助10
15秒前
16秒前
HOOW完成签到,获得积分10
16秒前
19秒前
Joy完成签到,获得积分10
19秒前
20秒前
鱼y完成签到,获得积分10
20秒前
22秒前
zuo完成签到,获得积分20
23秒前
豆豆逗发布了新的文献求助10
23秒前
23秒前
23秒前
科研通AI6应助大可不必采纳,获得30
24秒前
大个应助被窝哲学家采纳,获得10
24秒前
hp发布了新的文献求助30
26秒前
殿殿发布了新的文献求助10
26秒前
26秒前
科研公主完成签到,获得积分10
27秒前
27秒前
嘿嘿应助专注钢笔采纳,获得10
27秒前
fcc完成签到 ,获得积分10
28秒前
28秒前
小二郎应助开花不铁树采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638275
求助须知:如何正确求助?哪些是违规求助? 4745159
关于积分的说明 15001795
捐赠科研通 4796454
什么是DOI,文献DOI怎么找? 2562586
邀请新用户注册赠送积分活动 1521971
关于科研通互助平台的介绍 1481834