Partial separability and functional graphical models for multivariate Gaussian processes

图形模型 协方差 多元统计 功能数据分析 数学 高斯分布 多元正态分布 协方差矩阵的估计 算法 计算机科学 人工智能 统计 物理 量子力学
作者
Juan Luis García‐Zapata,Sang‐Yun Oh,Alexander M. Petersen
出处
期刊:Biometrika [Oxford University Press]
卷期号:109 (3): 665-681 被引量:33
标识
DOI:10.1093/biomet/asab046
摘要

The covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extensions of statistical methods for standard multivariate data to the functional data setting challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, a key difficulty compared to multivariate data is that the covariance operator is compact, and thus not invertible. The methodology in this paper addresses the general problem of covariance modeling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for the covariance operator of multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen-Loève-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in order to provide a well-defined functional Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of identical fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task. %Empirical performance of the method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助核桃采纳,获得10
刚刚
华仔应助核桃采纳,获得10
刚刚
烟花应助核桃采纳,获得10
刚刚
上官若男应助核桃采纳,获得10
1秒前
火星上惜蕊完成签到,获得积分10
1秒前
1秒前
隐形之玉发布了新的文献求助30
1秒前
1秒前
研友_Zrlk7L发布了新的文献求助10
2秒前
2秒前
无花果应助海纳百川采纳,获得10
2秒前
3秒前
沉梦昂志_hzy完成签到,获得积分0
3秒前
温婉的香水完成签到 ,获得积分10
3秒前
lee完成签到,获得积分10
3秒前
Mistletoe完成签到,获得积分10
3秒前
2d3y完成签到,获得积分20
4秒前
蒋美桥发布了新的文献求助80
4秒前
量子星尘发布了新的文献求助10
4秒前
cc完成签到,获得积分10
4秒前
orixero应助典雅十八采纳,获得10
5秒前
SciGPT应助核桃采纳,获得10
5秒前
Hello应助核桃采纳,获得30
5秒前
淡淡土豆应助核桃采纳,获得10
5秒前
ri_290完成签到 ,获得积分10
5秒前
所所应助核桃采纳,获得10
5秒前
丘比特应助核桃采纳,获得10
5秒前
5秒前
Lucas应助核桃采纳,获得10
5秒前
思源应助核桃采纳,获得10
5秒前
华仔应助核桃采纳,获得10
5秒前
淡淡土豆应助困死了采纳,获得10
5秒前
完美世界应助核桃采纳,获得10
5秒前
勤劳的忆寒完成签到,获得积分0
6秒前
cyj发布了新的文献求助10
6秒前
宿起龙完成签到,获得积分20
6秒前
大欣完成签到,获得积分10
7秒前
卷卷卷儿完成签到 ,获得积分10
7秒前
凶狠的绿兰完成签到 ,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330