Radiomics of small renal masses on multiphasic CT: accuracy of machine learning–based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat

无线电技术 放射科 介入放射学 医学 肾细胞癌 神经组阅片室 超声波 血管平滑肌脂肪瘤 病理 内科学 神经学 精神科
作者
Ruimeng Yang,Jialiang Wu,Lei Sun,Shengsheng Lai,Yikai Xu,Xilong Liu,Ying Ma,Xin Zhen
出处
期刊:European Radiology [Springer Nature]
卷期号:30 (2): 1254-1263 被引量:89
标识
DOI:10.1007/s00330-019-06384-5
摘要

To investigate the discriminative capabilities of different machine learning–based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC). This study retrospectively collected 163 patients with pathologically proven small renal mass, including 118 RCC and 45 AMLwvf patients. Target region of interest (ROI) delineation, followed by texture feature extraction, was performed on a representative slice with the largest lesion area on each phase of the four-phase CT images. Fifteen concatenations of the four-phasic features were fed into 224 classification models (built with 8 classifiers and 28 feature selection methods), classification performances of the 3360 resultant discriminative models were compared, and the top-ranked features were analyzed. Image features extracted from the unenhanced phase (UP) CT image demonstrated dominant classification performances over features from other three phases. The two discriminative models “SVM + t_score” and “SVM + relief” achieved the highest classification AUC of 0.90. The 10 top-ranked features from UP included 1 shape feature, 5 first-order statistics features, and 4 texture features, where the shape feature and the first-order statistics features showed superior discriminative capabilities in differentiating RCC vs. AMLwvf through the t-SNE visualization. Image features extracted from UP are sufficient to generate accurate differentiation between AMLwvf and RCC using machine learning–based classification model. • Radiomics extracted from unenhanced CT are sufficient to accurately differentiate angiomyolipoma without visible fat and renal cell carcinoma using machine learning–based classification model. • The highest discriminative models achieved an AUC of 0.90 and were based on the analysis of unenhanced CT, alone or in association with images obtained at the nephrographic phase. • Features related to shape and to histogram analysis (first-order statistics) showed superior discrimination compared with gray-level distribution of the image (second-order statistics, commonly called texture features).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助欣慰雪巧采纳,获得10
刚刚
1秒前
风华发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
hsr_eye发布了新的文献求助10
2秒前
Des完成签到,获得积分10
3秒前
不安白秋发布了新的文献求助10
3秒前
无霜发布了新的文献求助10
3秒前
zz驳回了小青椒应助
3秒前
斯文败类应助wzy采纳,获得10
3秒前
自然的曲奇完成签到 ,获得积分10
3秒前
3秒前
3秒前
善学以致用应助dakjdia采纳,获得10
4秒前
离线请留言完成签到,获得积分10
4秒前
ding应助QIQI采纳,获得10
4秒前
无名小卒每文完成签到,获得积分10
4秒前
邢丹丹发布了新的文献求助10
4秒前
5秒前
6秒前
蓝天发布了新的文献求助10
7秒前
Akim应助春花采纳,获得10
7秒前
youy发布了新的文献求助20
7秒前
8秒前
多情易蓉完成签到,获得积分10
8秒前
8秒前
微光完成签到,获得积分10
8秒前
毛毛完成签到,获得积分10
9秒前
9秒前
大大怪发布了新的文献求助20
9秒前
10秒前
10秒前
斯文败类应助欣慰雪巧采纳,获得10
11秒前
梅菜菜完成签到,获得积分10
11秒前
13秒前
Hello应助zyx采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933