已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Myometrial Infiltration of Endometrial Cancer on MRI: A Radiomics-Powered Machine Learning Pilot Study

无线电技术 随机森林 C4.5算法 特征选择 人工智能 接收机工作特性 医学 试验装置 计算机科学 分割 交叉验证 人口 分类器(UML) 放射科 特征提取 模式识别(心理学) 机器学习 支持向量机 朴素贝叶斯分类器 环境卫生
作者
Arnaldo Stanzione,Renato Cuocolo,Renata Del Grosso,Anna Nardiello,Valeria Romeo,Antonio Travaglino,Antonio Raffone,Giuseppe Bifulco,Fulvio Zullo,Luigi Insabato,Simone Maurea,Pier Paolo Mainenti
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:28 (5): 737-744 被引量:79
标识
DOI:10.1016/j.acra.2020.02.028
摘要

Rationale and Objectives To evaluate an MRI radiomics-powered machine learning (ML) model's performance for the identification of deep myometrial invasion (DMI) in endometrial cancer (EC) patients and explore its clinical applicability. Materials and Methods Preoperative MRI scans of EC patients were retrospectively selected. Three radiologists performed whole-lesion segmentation on T2-weighted images for feature extraction. Feature robustness was tested before randomly splitting the population in training and test sets (80/20% proportion). A multistep feature selection was applied to the first, excluding noninformative, low variance features and redundant, highly-intercorrelated ones. A Random Forest wrapper was used to identify the most informative among the remaining. An ensemble of J48 decision trees was tuned and finalized in the training set using 10-fold cross-validation, and then assessed on the test set. A radiologist evaluated all MRI scans without and with the aid of ML to detect the presence of DMI. McNemars's test was employed to compare the two readings. Results Of the 54 patients included, 17 had DMI. In all, 1132 features were extracted. After feature selection, the Random Forest wrapper identified the three most informative which were used for ML training. The classifier reached an accuracy of 86% and 91% and areas under the Receiver Operating Characteristic curve of 0.92 and 0.94 in the cross-validation and final testing, respectively. The radiologist performance increased from 82% to 100% when using ML (p = 0.48). Conclusion We proved the feasibility of a radiomics-powered ML model for DMI detection on MR T2-w images that might help radiologists to increase their performance. To evaluate an MRI radiomics-powered machine learning (ML) model's performance for the identification of deep myometrial invasion (DMI) in endometrial cancer (EC) patients and explore its clinical applicability. Preoperative MRI scans of EC patients were retrospectively selected. Three radiologists performed whole-lesion segmentation on T2-weighted images for feature extraction. Feature robustness was tested before randomly splitting the population in training and test sets (80/20% proportion). A multistep feature selection was applied to the first, excluding noninformative, low variance features and redundant, highly-intercorrelated ones. A Random Forest wrapper was used to identify the most informative among the remaining. An ensemble of J48 decision trees was tuned and finalized in the training set using 10-fold cross-validation, and then assessed on the test set. A radiologist evaluated all MRI scans without and with the aid of ML to detect the presence of DMI. McNemars's test was employed to compare the two readings. Of the 54 patients included, 17 had DMI. In all, 1132 features were extracted. After feature selection, the Random Forest wrapper identified the three most informative which were used for ML training. The classifier reached an accuracy of 86% and 91% and areas under the Receiver Operating Characteristic curve of 0.92 and 0.94 in the cross-validation and final testing, respectively. The radiologist performance increased from 82% to 100% when using ML (p = 0.48). We proved the feasibility of a radiomics-powered ML model for DMI detection on MR T2-w images that might help radiologists to increase their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹曹完成签到,获得积分10
1秒前
Cc完成签到 ,获得积分10
2秒前
单薄碧灵完成签到 ,获得积分10
3秒前
Denvir完成签到 ,获得积分10
4秒前
33完成签到 ,获得积分10
7秒前
橘子完成签到 ,获得积分10
8秒前
称心的语梦完成签到,获得积分10
13秒前
19秒前
小m完成签到 ,获得积分10
19秒前
ning_qing完成签到 ,获得积分10
21秒前
科研通AI5应助陈腿毛采纳,获得10
21秒前
24秒前
胡图图啦啦完成签到 ,获得积分10
25秒前
身法马可波罗完成签到 ,获得积分10
28秒前
迷你的夏菡完成签到 ,获得积分10
28秒前
kk完成签到 ,获得积分10
31秒前
李爱国应助陈腿毛采纳,获得10
35秒前
围城完成签到,获得积分10
37秒前
qiany完成签到,获得积分20
43秒前
自由寻冬完成签到 ,获得积分10
45秒前
46秒前
梁梁完成签到 ,获得积分10
48秒前
科研通AI5应助qiany采纳,获得10
48秒前
柯妍顺发布了新的文献求助10
51秒前
研友_Z7gWlZ完成签到,获得积分10
55秒前
小竹子完成签到 ,获得积分10
56秒前
谢成完成签到 ,获得积分10
1分钟前
研友_Z7gWlZ发布了新的文献求助10
1分钟前
柯妍顺完成签到,获得积分10
1分钟前
wes完成签到 ,获得积分10
1分钟前
Leach完成签到 ,获得积分10
1分钟前
胖墩墩完成签到 ,获得积分10
1分钟前
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
kyrie发布了新的文献求助10
1分钟前
怡然绮彤完成签到 ,获得积分10
1分钟前
陈腿毛发布了新的文献求助10
1分钟前
qiany发布了新的文献求助10
1分钟前
kelite完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843144
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540377
捐赠科研通 3105997
什么是DOI,文献DOI怎么找? 1710830
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264