Corrosion Identification of Fittings Based on Computer Vision

人工智能 计算机科学 Rust(编程语言) 特征提取 计算机视觉 像素 卷积神经网络 RGB颜色模型 特征(语言学) 模式识别(心理学) 语言学 哲学 程序设计语言
作者
Zhiren Tian,Guifeng Zhang,Yongli Liao,Ruihai Li,Fanqi Huang
标识
DOI:10.1109/aiam48774.2019.00123
摘要

The metal rust environment is complex, and the rust parts and shapes are quite different, making rust difficult to detect. As drones are gradually applied to line inspections, computer vision can be used for the identification of metal corrosion. Aiming at the problems existing in the current corrosion detection, this paper proposes a corrosion detection algorithm based on Faster-RCNN target detection model and the rust HSI color feature, which is used to solve the problem of poor applicability and inefficiency of digital image processing and features cannot be accurately extracted when using deep learning method and other issues. First, the rust image is converted from the RGB color model to the HSI color model, and then each pixel of the HSI space is traversed. According to the threshold range of the rusted color feature, it is determined whether the pixel is rusted, thereby removing the complex interference background in the image, leaving only the rusted area used to facilitate the labeling. Then, manually labeling into a training set through the LabelImg open source annotation tool. The labeled data set facilitates feature extraction by convolutional neural networks because only rusted areas are present. Corrosion detection and localization were performed on the prepared training set using the Faster-RCNN target detection model. The results show that it has a good recognition effect for several common rust conditions. Moreover, the method of combining the deep learning algorithm with the HSI color feature achieves a high level in determining the correctness and recall rate of rust, and the leak recognition rate also meets the practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
916应助葳葳采纳,获得10
刚刚
3秒前
sddfafd完成签到,获得积分10
3秒前
领导范儿应助dreamboat采纳,获得10
4秒前
MM11111应助古月采纳,获得30
4秒前
Vvvnnnaa1发布了新的文献求助10
5秒前
anne完成签到 ,获得积分10
5秒前
千空发布了新的文献求助10
5秒前
9秒前
AUGKING27完成签到 ,获得积分10
10秒前
11秒前
12秒前
善良海云完成签到,获得积分10
12秒前
guangshuang发布了新的文献求助10
13秒前
科研通AI5应助小巧雪糕采纳,获得10
15秒前
橘子发布了新的文献求助10
17秒前
日出发布了新的文献求助10
18秒前
伶俐念珍发布了新的文献求助10
18秒前
19秒前
Rye227应助日出采纳,获得10
20秒前
guangshuang完成签到,获得积分10
21秒前
cdercder应助流年采纳,获得10
24秒前
26秒前
27秒前
27秒前
豆浆烩面完成签到,获得积分10
28秒前
huangbing123完成签到 ,获得积分10
29秒前
热情孤丹发布了新的文献求助10
30秒前
vv发布了新的文献求助10
30秒前
SciGPT应助包容的香菱采纳,获得10
30秒前
滕永杰发布了新的文献求助10
31秒前
Ancestor发布了新的文献求助10
33秒前
Jieh完成签到,获得积分10
35秒前
客念完成签到 ,获得积分10
35秒前
38秒前
JamesPei应助静好采纳,获得10
38秒前
Lucas应助热情孤丹采纳,获得10
39秒前
豆浆烩面发布了新的文献求助10
40秒前
43秒前
爆米花应助Ancestor采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778351
求助须知:如何正确求助?哪些是违规求助? 3323953
关于积分的说明 10216860
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667919
邀请新用户注册赠送积分活动 798427
科研通“疑难数据库(出版商)”最低求助积分说明 758385