Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach

生命周期评估 环境科学 气候变化 生产(经济) 环境影响评价 农业生产力 降水 影响评估 农业 气象学 地理 生态学 宏观经济学 考古 公共行政 政治学 经济 生物
作者
Eun Kyung Lee,Wangjian Zhang,Xuesong Zhang,Paul R. Adler,Shao Lin,Beth J. Feingold,Haider A. Khwaja,Xiaobo Xue Romeiko
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:714: 136697-136697 被引量:51
标识
DOI:10.1016/j.scitotenv.2020.136697
摘要

Climate change is exacerbating environmental pollution from crop production. Spatially and temporally explicit estimates of life-cycle environmental impacts are therefore needed for suggesting location and time relevant environmental mitigations strategies. Emission factors and process-based mechanism models are popular approaches used to estimate life-cycle environmental impacts. However, emission factors are often incapable of describing spatial and temporal heterogeneity of agricultural emissions, whereas process-based mechanistic models, capable of capturing the heterogeneity, tend to be very complicated and time-consuming. Efficient prediction of life-cycle environmental impacts from agricultural production is lacking. This study develops a rapid predictive model to quantify life-cycle global warming (GW) and eutrophication (EU) impacts of corn production using a novel machine learning approach. We used the boosted regression tree (BRT) model to estimate future life-cycle environmental impacts of corn production in U.S. Midwest counties under four emissions scenarios for years 2022-2100. Results from BRT models indicate that the cross-validation (R2) for predicting life cycle GW and EU impacts ranged from 0.78 to 0.82, respectively. Furthermore, results show that future life-cycle GW and EU impacts of corn production will increase in magnitude under all four emissions scenarios, with the highest environmental impacts shown under the high-emissions scenario. Moreover, this study found that changes in precipitation and temperature played a significant role in influencing the spatial heterogeneity in all life-cycle impacts across Midwest counties. The BRT model results indicate that machine learning can be a useful tool for predicting spatially and temporally explicit future life-cycle environmental impacts associated with corn production under different climate scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyl完成签到,获得积分10
1秒前
黄花发布了新的文献求助10
1秒前
1秒前
小二郎应助小鲨鱼采纳,获得10
1秒前
1秒前
1秒前
程cc关注了科研通微信公众号
2秒前
hhhh_xt发布了新的文献求助30
2秒前
jszz应助慈祥的冰露采纳,获得10
2秒前
学术搭子完成签到,获得积分10
2秒前
fff发布了新的文献求助10
2秒前
dew应助稳重大象采纳,获得10
3秒前
Cssss给Cssss的求助进行了留言
3秒前
3秒前
诸青梦发布了新的文献求助150
4秒前
量子星尘发布了新的文献求助10
4秒前
顺利的毛衣完成签到,获得积分10
4秒前
4秒前
4秒前
zouzou发布了新的文献求助10
5秒前
5秒前
潇洒甜瓜完成签到,获得积分10
5秒前
Hali发布了新的文献求助10
6秒前
6秒前
明天发布了新的文献求助10
6秒前
7秒前
锦安完成签到 ,获得积分10
7秒前
潇洒一曲完成签到,获得积分10
7秒前
共享精神应助酷酷问雁采纳,获得20
8秒前
9秒前
9秒前
苗条的思枫完成签到,获得积分20
9秒前
小鱼发布了新的文献求助10
10秒前
某时某刻发布了新的文献求助10
10秒前
11秒前
斯文败类应助zouzou采纳,获得10
11秒前
美女完成签到,获得积分10
12秒前
哆啦的空间站应助gyhmm采纳,获得10
13秒前
13秒前
smh完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5022847
求助须知:如何正确求助?哪些是违规求助? 4260538
关于积分的说明 13278261
捐赠科研通 4066976
什么是DOI,文献DOI怎么找? 2224425
邀请新用户注册赠送积分活动 1233322
关于科研通互助平台的介绍 1157255