已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving ECG Classification Interpretability using Saliency Maps

可解释性 计算机科学 人工智能 机器学习 概化理论 过度拟合 班级(哲学) 数据挖掘 人工神经网络 数学 统计
作者
Yola Jones,Fani Deligianni,Jeff Dalton
标识
DOI:10.1109/bibe50027.2020.00114
摘要

Cardiovascular disease is a large worldwide healthcare issue; symptoms often present suddenly with minimal warning. The electrocardiogram (ECG) is a fast, simple and reliable method of evaluating the health of the heart, by measuring electrical activity recorded through electrodes placed on the skin. ECGs often need to be analyzed by a cardiologist, taking time which could be spent on improving patient care and outcomes. Because of this, automatic ECG classification systems using machine learning have been proposed, which can learn complex interactions between ECG features and use this to detect abnormalities. However, algorithms built for this purpose often fail to generalize well to unseen data, reporting initially impressive results which drop dramatically when applied to new environments. Additionally, machine learning algorithms suffer a "black-box" issue, in which it is difficult to determine how a decision has been made. This is vital for applications in healthcare, as clinicians need to be able to verify the process of evaluation in order to trust the algorithm. This paper proposes a method for visualizing model decisions across each class in the MIT-BIH arrhythmia dataset, using adapted saliency maps averaged across complete classes to determine what patterns are being learned. We do this by building two algorithms based on state-of-the-art models. This paper highlights how these maps can be used to find problems in the model which could be affecting generalizability and model performance. Comparing saliency maps across complete classes gives an overall impression of confounding variables or other biases in the model, unlike what would be highlighted when comparing saliency maps on an ECG-by-ECG basis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xc完成签到,获得积分10
刚刚
oboy应助paulmichael采纳,获得10
2秒前
Yuson_L应助童谣采纳,获得10
3秒前
哈喽发布了新的文献求助10
4秒前
魏伯安发布了新的文献求助10
5秒前
6秒前
再睡一夏完成签到 ,获得积分10
7秒前
上课就是看见完成签到,获得积分10
10秒前
wen发布了新的文献求助10
10秒前
WXHL完成签到 ,获得积分10
11秒前
14秒前
Yan完成签到,获得积分10
15秒前
15秒前
大波斯菊完成签到,获得积分10
18秒前
18秒前
FashionBoy应助大方的蓝采纳,获得10
19秒前
默默冬瓜发布了新的文献求助10
19秒前
大波斯菊发布了新的文献求助10
23秒前
tanhaowen发布了新的文献求助10
28秒前
28秒前
啊哈哈哈完成签到,获得积分10
32秒前
CodeCraft应助猴子大王666采纳,获得10
32秒前
耍酷乌发布了新的文献求助30
34秒前
35秒前
xwwisher完成签到 ,获得积分10
36秒前
36秒前
37秒前
wded完成签到,获得积分10
38秒前
41秒前
耍酷乌完成签到,获得积分20
43秒前
43秒前
yang发布了新的文献求助10
43秒前
45秒前
mouzaisi发布了新的文献求助10
45秒前
46秒前
48秒前
SleliLee发布了新的文献求助10
50秒前
动听千风完成签到 ,获得积分10
51秒前
我是老大应助周而复始@采纳,获得10
51秒前
鳗鱼新之发布了新的文献求助10
52秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369430
关于积分的说明 10455848
捐赠科研通 3089037
什么是DOI,文献DOI怎么找? 1699622
邀请新用户注册赠送积分活动 817423
科研通“疑难数据库(出版商)”最低求助积分说明 770217