已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

iUmami-SCM: A Novel Sequence-Based Predictor for Prediction and Analysis of Umami Peptides Using a Scoring Card Method with Propensity Scores of Dipeptides

鲜味 人工智能 计算生物学 计算机科学 机器学习 鉴定(生物学) 二肽 品味 化学 生物化学 生物 植物
作者
Phasit Charoenkwan,Janchai Yana,Chanin Nantasenamat,Md Mehedi Hasan,Watshara Shoombuatong
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (12): 6666-6678 被引量:120
标识
DOI:10.1021/acs.jcim.0c00707
摘要

Umami or the taste of monosodium glutamate represents one of the major attractive taste modalities in humans. Therefore, knowledge about biophysical and biochemical properties of the umami taste is important for both scientific research and the food industry. Experimental approaches for predicting umami peptides are labor intensive, time consuming, and expensive. To date, computational models for the prediction and analysis of umami peptides as a function of sequence information have not been developed yet. In this study, we have proposed the first sequence-based predictor named iUmami-SCM using primary sequence information for the identification and characterization of umami peptides. iUmami-SCM utilized a newly developed scoring card method (SCM) in conjunction with the propensity scores of amino acids and dipeptide. Our predictor demonstrated excellent prediction performance ability for predicting umami peptides as well as outperforming other commonly used machine learning classifiers. Particularly, iUmami-SCM afforded the highest accuracy and Matthews correlation coefficient of 0.865 and 0.679, respectively, on an independent data set. Furthermore, the analysis of SCM-derived propensity scores was performed so as to provide a more in-depth understanding and knowledge of biophysical and biochemical properties of umami intensities of peptides. To develop a convenient bioinformatics tool, the best model is deployed as a web server that is made publicly available at http://camt.pythonanywhere.com/iUmami-SCM. The iUmami-SCM, as presented herein, serves as a powerful computational technique for large-scale umami peptide identification as well as facilitating the interpretation of umami peptides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
honphyjiang发布了新的文献求助10
1秒前
Owen应助腌黄瓜女士采纳,获得10
5秒前
6秒前
龚广山完成签到,获得积分10
10秒前
冰魂应助陈伟杰采纳,获得10
12秒前
我是老大应助明理往事采纳,获得10
12秒前
龚广山发布了新的文献求助10
12秒前
乐乐应助小陈同学采纳,获得10
13秒前
18秒前
华仔应助honphyjiang采纳,获得10
18秒前
www完成签到 ,获得积分10
21秒前
23秒前
zfj完成签到 ,获得积分10
24秒前
Jasper应助FHY采纳,获得10
25秒前
25秒前
柠木完成签到 ,获得积分10
25秒前
会飞的鱼发布了新的文献求助10
25秒前
26秒前
NexusExplorer应助陈伟杰采纳,获得10
26秒前
koko发布了新的文献求助10
27秒前
13633501455完成签到 ,获得积分10
28秒前
Ava应助鲤鱼一一采纳,获得10
29秒前
29秒前
SciGPT应助菠萝吹雪采纳,获得10
32秒前
科研通AI5应助1218采纳,获得10
34秒前
joy完成签到 ,获得积分10
34秒前
Jasper应助xx采纳,获得10
35秒前
36秒前
小蘑菇应助陈伟杰采纳,获得10
36秒前
寒冷天亦完成签到,获得积分10
37秒前
英俊的铭应助会飞的鱼采纳,获得30
38秒前
40秒前
FashionBoy应助梦里贪乐采纳,获得10
40秒前
42秒前
舒心白山发布了新的文献求助10
45秒前
46秒前
48秒前
注水萝卜完成签到 ,获得积分10
48秒前
lixiaoxia发布了新的文献求助10
50秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
International standard-setting alliance and its possible negative effect on consumer's technology acceptance and technology progress 200
The acute effects of performing drop jumps of different intensities on concentric squat strength 200
International standard-setting alliance and its possible negative effect on consumer's technology acceptance and technology progress 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824750
求助须知:如何正确求助?哪些是违规求助? 3367075
关于积分的说明 10444373
捐赠科研通 3086384
什么是DOI,文献DOI怎么找? 1697952
邀请新用户注册赠送积分活动 816624
科研通“疑难数据库(出版商)”最低求助积分说明 769840