Deep learning with noise‐to‐noise training for denoising in SPECT myocardial perfusion imaging

降噪 噪音(视频) 平滑的 人工智能 计算机科学 单光子发射计算机断层摄影术 滤波器(信号处理) 迭代重建 维纳滤波器 高斯模糊 模式识别(心理学) 图像分辨率 信噪比(成像) 门控心肌显像 高斯噪声 基本事实 高斯滤波器 计算机视觉 核医学 图像处理 图像复原 医学 图像(数学) 内科学 射血分数 电信 心力衰竭
作者
Junchi Liu,Yongyi Yang,Miles N. Wernick,P. Hendrik Pretorius,Michael A. King
出处
期刊:Medical Physics [Wiley]
卷期号:48 (1): 156-168 被引量:42
标识
DOI:10.1002/mp.14577
摘要

Post-reconstruction filtering is often applied for noise suppression due to limited data counts in myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT). We study a deep learning (DL) approach for denoising in conventional SPECT-MPI acquisitions, and investigate whether it can be more effective for improving the detectability of perfusion defects compared to traditional postfiltering.Owing to the lack of ground truth in clinical studies, we adopt a noise-to-noise (N2N) training approach for denoising in SPECT-MPI images. We consider a coupled U-Net (CU-Net) structure which is designed to improve learning efficiency through feature map reuse. For network training we employ a bootstrap procedure to generate multiple noise realizations from list-mode clinical acquisitions. In the experiments we demonstrated the proposed approach on a set of 895 clinical studies, where the iterative OSEM algorithm with three-dimensional (3D) Gaussian postfiltering was used to reconstruct the images. We investigated the detection performance of perfusion defects in the reconstructed images using the non-prewhitening matched filter (NPWMF), evaluated the uniformity of left ventricular (LV) wall in terms of image intensity, and quantified the effect of smoothing on the spatial resolution of the reconstructed LV wall by using its full-width at half-maximum (FWHM).Compared to OSEM with Gaussian postfiltering, the DL denoised images with CU-Net significantly improved the detection performance of perfusion defects at all contrast levels (65%, 50%, 35%, and 20%). The signal-to-noise ratio (SNRD ) in the NPWMF output was increased on average by 8% over optimal Gaussian smoothing (P < 10-4 , paired t-test), while the inter-subject variability was greatly reduced. The CU-Net also outperformed a 3D nonlocal means (NLM) filter and a convolutional autoencoder (CAE) denoising network in terms of SNRD . In addition, the FWHM of the LV wall in the reconstructed images was varied by less than 1%. Furthermore, CU-Net also improved the detection performance when the images were processed with less post-reconstruction smoothing (a trade-off of increased noise for better LV resolution), with SNRD improved on average by 23%.The proposed DL with N2N training approach can yield additional noise suppression in SPECT-MPI images over conventional postfiltering. For perfusion defect detection, DL with CU-Net could outperform conventional 3D Gaussian filtering with optimal setting as well as NLM and CAE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小汪发布了新的文献求助10
刚刚
去偷火龙果完成签到,获得积分10
1秒前
1秒前
不安海蓝完成签到,获得积分10
1秒前
2秒前
日月星完成签到,获得积分10
2秒前
keepory86完成签到,获得积分10
4秒前
Swait完成签到,获得积分10
4秒前
Lucifer完成签到,获得积分10
5秒前
yy完成签到,获得积分10
5秒前
5秒前
KKKKKKK完成签到 ,获得积分10
5秒前
搞怪的白云完成签到 ,获得积分10
5秒前
mfy0068完成签到,获得积分10
6秒前
Rae完成签到,获得积分10
6秒前
7秒前
俭朴的一曲完成签到,获得积分10
7秒前
Auston_zhong应助plateauman采纳,获得10
8秒前
弹指一挥间完成签到 ,获得积分10
9秒前
needy完成签到,获得积分10
9秒前
9Songs发布了新的文献求助10
9秒前
yaya完成签到,获得积分10
9秒前
好好科研~完成签到 ,获得积分10
11秒前
李友健完成签到 ,获得积分10
11秒前
Heidi完成签到 ,获得积分10
12秒前
科研包完成签到,获得积分10
12秒前
12秒前
12秒前
小白完成签到,获得积分10
13秒前
小汪完成签到,获得积分10
13秒前
xuyun发布了新的文献求助10
16秒前
欢呼的茗茗完成签到 ,获得积分10
16秒前
Karsen夏完成签到 ,获得积分10
16秒前
cdercder应助Swait采纳,获得10
16秒前
魁梧的海秋完成签到,获得积分10
16秒前
飞云发布了新的文献求助10
16秒前
海德堡完成签到,获得积分10
18秒前
程哲瀚完成签到,获得积分10
18秒前
周先森完成签到,获得积分10
18秒前
剑指东方是为谁应助Xuu采纳,获得10
19秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819996
求助须知:如何正确求助?哪些是违规求助? 3362921
关于积分的说明 10419317
捐赠科研通 3081243
什么是DOI,文献DOI怎么找? 1695047
邀请新用户注册赠送积分活动 814855
科研通“疑难数据库(出版商)”最低求助积分说明 768545