抓住
对象(语法)
计算机科学
自编码
人工智能
机器人
集合(抽象数据类型)
计算机视觉
任务(项目管理)
组分(热力学)
点(几何)
点云
人工神经网络
数学
工程类
物理
几何学
系统工程
热力学
程序设计语言
作者
Arsalan Mousavian,Clemens Eppner,Dieter Fox
标识
DOI:10.1109/iccv.2019.00299
摘要
Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real-world without any extra steps.
科研通智能强力驱动
Strongly Powered by AbleSci AI