亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Polymer Swelling in Liquids

肿胀 的 聚合物 溶剂 溶解度 材料科学 溶解度参数 生物系统 化学 有机化学 复合材料 生物
作者
Qisong Xu,Jianwen Jiang
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:2 (8): 3576-3586 被引量:27
标识
DOI:10.1021/acsapm.0c00586
摘要

Swelling in liquids is of paramount importance for polymers used in many liquid-phase applications. This critical property has motivated numerous analytical theories and empirical experiments as well as recent atomistic simulations; however, a data-driven approach for polymer swelling is currently not available. In this study, we develop a machine learning (ML) methodology to investigate polymer swelling in liquids. This methodology is illustrated for the swelling of organic solvent nanofiltration (OSN) membranes and polydimethylsiloxane (PDMS) in various solvents. First, chemically intuitive descriptors such as solubility parameters and solvent properties are proposed to construct ML models. Using kernel ridge regression, the model based on the solubility parameters of the solvent and polymer is found to offer the best quantitative prediction and reveal multimodal swelling behavior for OSN membranes. For PDMS swelling, the solubility parameter and geometry of solvent are identified to be key properties. Then, a molecular representation via the sum-of-fragments approach is proposed and demonstrated remarkable predictive capability. Through appropriate data augmentation, reasonable out-of-sample prediction is achieved for polyetherimide swelling in nine solvents and PDMS swelling in substituted aromatic solvents. Finally, principal component analysis is applied to the proposed sum-of-fragments to explore its suitability as a molecular representation and the chemical space of polymer swelling. The relationships between molecular fragments and swelling degrees are quantitatively determined by Pearson correlations. This ML study demonstrates the development and utilization of physically meaningful chemical descriptors to construct models capable of superior prediction and unraveling fundamental insight into polymer swelling. Such a methodology can also be extended to other physical properties for polymers in liquids, thereby expanding its scope of potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chelsea发布了新的文献求助10
3秒前
4秒前
claud驳回了情怀应助
4秒前
4秒前
雨桃完成签到,获得积分10
5秒前
雨桃发布了新的文献求助10
9秒前
10秒前
10秒前
孤独的送终完成签到,获得积分10
17秒前
xiaolang2004完成签到,获得积分10
19秒前
小吴同学完成签到,获得积分20
26秒前
Dieubium发布了新的文献求助30
28秒前
烟花应助chelsea采纳,获得10
32秒前
40秒前
40秒前
chelsea发布了新的文献求助10
43秒前
oleskarabach发布了新的文献求助10
44秒前
yuyu发布了新的文献求助10
44秒前
46秒前
煎饼狗子发布了新的文献求助10
53秒前
LG完成签到,获得积分20
54秒前
尊敬乐蕊完成签到,获得积分10
57秒前
吉吉加油呀完成签到,获得积分10
57秒前
1分钟前
LG发布了新的文献求助10
1分钟前
want_top_journal完成签到,获得积分10
1分钟前
yuyu发布了新的文献求助10
1分钟前
1分钟前
yuyu发布了新的文献求助10
1分钟前
明理囧完成签到 ,获得积分10
1分钟前
顺利白竹完成签到 ,获得积分10
1分钟前
小蘑菇应助小明明采纳,获得10
1分钟前
华仔应助摸鱼采纳,获得30
1分钟前
claud给claud的求助进行了留言
1分钟前
阿亞完成签到,获得积分10
1分钟前
心想事成完成签到,获得积分10
1分钟前
姚琛完成签到 ,获得积分10
1分钟前
1分钟前
小鱼干发布了新的文献求助10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053512
求助须知:如何正确求助?哪些是违规求助? 3591684
关于积分的说明 11413301
捐赠科研通 3317876
什么是DOI,文献DOI怎么找? 1824882
邀请新用户注册赠送积分活动 896263
科研通“疑难数据库(出版商)”最低求助积分说明 817398