Machine Learning for Polymer Swelling in Liquids

肿胀 的 聚合物 溶剂 溶解度 材料科学 溶解度参数 生物系统 化学 有机化学 复合材料 生物
作者
Qisong Xu,Jianwen Jiang
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:2 (8): 3576-3586 被引量:24
标识
DOI:10.1021/acsapm.0c00586
摘要

Swelling in liquids is of paramount importance for polymers used in many liquid-phase applications. This critical property has motivated numerous analytical theories and empirical experiments as well as recent atomistic simulations; however, a data-driven approach for polymer swelling is currently not available. In this study, we develop a machine learning (ML) methodology to investigate polymer swelling in liquids. This methodology is illustrated for the swelling of organic solvent nanofiltration (OSN) membranes and polydimethylsiloxane (PDMS) in various solvents. First, chemically intuitive descriptors such as solubility parameters and solvent properties are proposed to construct ML models. Using kernel ridge regression, the model based on the solubility parameters of the solvent and polymer is found to offer the best quantitative prediction and reveal multimodal swelling behavior for OSN membranes. For PDMS swelling, the solubility parameter and geometry of solvent are identified to be key properties. Then, a molecular representation via the sum-of-fragments approach is proposed and demonstrated remarkable predictive capability. Through appropriate data augmentation, reasonable out-of-sample prediction is achieved for polyetherimide swelling in nine solvents and PDMS swelling in substituted aromatic solvents. Finally, principal component analysis is applied to the proposed sum-of-fragments to explore its suitability as a molecular representation and the chemical space of polymer swelling. The relationships between molecular fragments and swelling degrees are quantitatively determined by Pearson correlations. This ML study demonstrates the development and utilization of physically meaningful chemical descriptors to construct models capable of superior prediction and unraveling fundamental insight into polymer swelling. Such a methodology can also be extended to other physical properties for polymers in liquids, thereby expanding its scope of potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blacksmith0给blacksmith0的求助进行了留言
刚刚
HHYYAA完成签到,获得积分10
刚刚
章章完成签到,获得积分20
1秒前
Z123完成签到,获得积分10
2秒前
黎明森发布了新的文献求助10
2秒前
你好完成签到 ,获得积分10
4秒前
Maming完成签到 ,获得积分10
4秒前
6秒前
taotao完成签到 ,获得积分10
7秒前
lling完成签到 ,获得积分10
7秒前
youyouyou完成签到,获得积分10
8秒前
9秒前
9秒前
树池完成签到,获得积分10
9秒前
11秒前
12秒前
menxiaomei发布了新的文献求助10
15秒前
今后应助云栖采纳,获得10
16秒前
今后应助花痴的电灯泡采纳,获得10
17秒前
17秒前
科研通AI5应助123采纳,获得10
18秒前
youyouyou发布了新的文献求助10
18秒前
可爱的函函应助mmmmb采纳,获得30
18秒前
18秒前
蔚111完成签到 ,获得积分10
19秒前
19秒前
轻松笙发布了新的文献求助10
20秒前
bing完成签到,获得积分10
21秒前
23秒前
十一发布了新的文献求助10
23秒前
24秒前
秋2完成签到 ,获得积分10
25秒前
动漫大师发布了新的文献求助10
25秒前
科研通AI5应助menxiaomei采纳,获得10
26秒前
黎明森完成签到,获得积分10
27秒前
害羞便当发布了新的文献求助10
27秒前
复杂鬼神发布了新的文献求助20
28秒前
21完成签到,获得积分10
28秒前
Karry完成签到 ,获得积分10
29秒前
开朗以亦发布了新的文献求助100
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522