已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning suggests sleep as a core factor in chronic pain

慢性疼痛 分类 纤维肌痛 共病 病因学 医学 物理疗法 心理学 物理医学与康复 人工智能 计算机科学 精神科
作者
Teemu Miettinen,Pekka Mäntyselkä,Nora Hagelberg,Seppo Mustola,Eija Kalso,Jörn Lötsch
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:162 (1): 109-123 被引量:34
标识
DOI:10.1097/j.pain.0000000000002002
摘要

Abstract Patients with chronic pain have complex pain profiles and associated problems. Subgroup analysis can help identify key problems. We used a data-based approach to define pain phenotypes and their most relevant associated problems in 320 patients undergoing tertiary pain management. Unsupervised machine learning analysis of parameters “pain intensity,” “number of pain areas,” “pain duration,” “activity pain interference,” and “affective pain interference,” implemented as emergent self-organizing maps, identified 3 patient phenotype clusters. Supervised analyses, implemented as different types of decision rules, identified “affective pain interference” and the “number of pain areas” as most relevant for cluster assignment. These appeared 698 and 637 times, respectively, in 1000 cross-validation runs among the most relevant characteristics in an item categorization approach in a computed ABC analysis. Cluster assignment was achieved with a median balanced accuracy of 79.9%, a sensitivity of 74.1%, and a specificity of 87.7%. In addition, among 59 demographic, pain etiology, comorbidity, lifestyle, psychological, and treatment-related variables, sleep problems appeared 638 and 439 times among the most important characteristics in 1000 cross-validation runs where patients were assigned to the 2 extreme pain phenotype clusters. Also important were the parameters “fear of pain,” “self-rated poor health,” and “systolic blood pressure.” Decision trees trained with this information assigned patients to the extreme pain phenotype with an accuracy of 67%. Machine learning suggested sleep problems as key factors in the most difficult pain presentations, therefore deserving priority in the treatment of chronic pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独特靖柏关注了科研通微信公众号
刚刚
刚刚
薛定谔的粥完成签到 ,获得积分10
刚刚
Lucas应助zoiaii采纳,获得10
刚刚
1秒前
科研通AI5应助科研通管家采纳,获得100
2秒前
GPTea应助科研通管家采纳,获得150
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
GPTea应助科研通管家采纳,获得150
3秒前
归海剑完成签到,获得积分10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
oo完成签到,获得积分10
4秒前
4秒前
wa完成签到,获得积分10
5秒前
隐形曼青应助lala采纳,获得10
5秒前
6秒前
Ahui发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
小二郎应助务实的河马采纳,获得10
7秒前
冰果完成签到,获得积分10
8秒前
8秒前
uu发布了新的文献求助10
8秒前
8秒前
adaniu应助mark33442采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184879
求助须知:如何正确求助?哪些是违规求助? 4370445
关于积分的说明 13610415
捐赠科研通 4222587
什么是DOI,文献DOI怎么找? 2315930
邀请新用户注册赠送积分活动 1314542
关于科研通互助平台的介绍 1263456