MNIST数据库
卷积(计算机科学)
计算机科学
卷积神经网络
试验装置
集合(抽象数据类型)
人工智能
深度学习
功能(生物学)
发电机(电路理论)
数据集
鉴别器
乙状窦函数
噪音(视频)
图像(数学)
模式识别(心理学)
算法
人工神经网络
电信
功率(物理)
物理
生物
量子力学
进化生物学
探测器
程序设计语言
作者
Zixi Liu,Ming Tong,Xiaoyu Liu,Zhixiong Du,Weicong Chen
出处
期刊:2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)
日期:2020-05-05
被引量:9
标识
DOI:10.1109/itnec48623.2020.9085221
摘要
The Deep Convolution Generative Adversarial Network (DCGAN) adds the structure of Generative Adversarial Network (GAN) on the basis of the generation countermeasure network, and specially generates image samples. In this paper, DCGAN is used to generate the image which does not belong to MNIST data set, and then, a new data set is obtained. Finally, Convolutional Neural Networks (CNN) [1] is used to test the new data set. We need define an initializer to make the GAN converge better, and use the standard LEAKYRELU function to activate the GAN. The generator is defined by a fully connected layer with an input size of 128. The noise is Gaussian white noise, which uses RELU as the activation function. The discriminator uses two convolution layers, the first one uses RELU as the activation function, and the second layer uses sigmoid function. The results show that the accuracy of the new data set is the same as that of the original data set when tested on CNN, and the method of expanding MNIST data set by using deep convolution is effective.
科研通智能强力驱动
Strongly Powered by AbleSci AI