A comprehensive comparison on cell type composition inference for spatial transcriptomics data

反褶积 非负矩阵分解 推论 计算机科学 数据挖掘 人工智能 鉴定(生物学) 模式识别(心理学) 计算生物学 矩阵分解 算法 生物 植物 量子力学 物理 特征向量
作者
Jiawen Chen,Weifang Liu,Tianyou Luo,Zhentao Yu,Min-Zhi Jiang,Jia Wen,Gaorav P. Gupta,Paola Giusti,Hongtu Zhu,Yuchen Yang,Yun Li
标识
DOI:10.1101/2022.02.20.481171
摘要

Abstract Spatial transcriptomic (ST) technologies allow researchers to examine high-quality RNA-sequencing data along with maintained two-dimensional positional information as well as a co-registered histology image. A popular use of ST omics data is to provide insights about tissue structure and spatially unique features. However, due to the technical nature unique to most ST data, the resolution varies from a diameter of 2-10 μm to 50-100 μm instead of single-cell resolution, which brings uncertainty into cell number and cell mixture within each ST spot. Motivated by the important role for spatial arrangement of cell types within a tissue in physiology and disease pathogenesis, several ST deconvolution methods have been developed and are being used to explore gene expression variation and identification of spatial domains. The aim of this work is to review state-of-the-art methods for ST deconvolution, while comparing their strengths and weaknesses. Specifically, we use four real datasets to examine the performance of eight methods across different tissues and technological platforms. Key Points Cell mixture inference is a critical step in the analysis of spatial transcriptomics (ST) data to prevent downstream analysis suffering from confounding factors at the spot level. Existing ST deconvolution methods can be classified into three groups: probabilistic-based, non-negative matrix factorization and non-negative least squares based, and other deep learning framework-based methods. We compared eight ST deconvolution methods by using two single cell level resolution datasets and two spot level resolution ST datasets. We provided practical guidelines for the choice of method under different scenarios as well as the optimal subsets of genes to use for each method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许鸽完成签到,获得积分10
1秒前
伶俐长颈鹿完成签到,获得积分10
3秒前
6秒前
zhang完成签到 ,获得积分10
9秒前
XQ完成签到,获得积分10
9秒前
Kevin完成签到,获得积分10
9秒前
9秒前
李健应助小黑爱搞科研采纳,获得10
9秒前
戴先森发布了新的文献求助10
10秒前
影子芳香完成签到,获得积分10
10秒前
从容的月光完成签到 ,获得积分10
10秒前
kong发布了新的文献求助10
12秒前
小鹿儿完成签到,获得积分0
12秒前
小胖完成签到 ,获得积分10
12秒前
若枫完成签到,获得积分10
13秒前
zhang完成签到,获得积分10
13秒前
马騳骉完成签到,获得积分10
14秒前
Silence完成签到,获得积分0
14秒前
戴先森完成签到,获得积分10
14秒前
帅气的祥发布了新的文献求助10
14秒前
长风完成签到 ,获得积分10
15秒前
xueerbx完成签到,获得积分10
15秒前
胡杨树2006完成签到,获得积分10
17秒前
lxlcx完成签到,获得积分10
18秒前
言悦完成签到,获得积分10
20秒前
风中可仁完成签到 ,获得积分10
22秒前
lu完成签到,获得积分10
22秒前
22秒前
动听的谷秋完成签到 ,获得积分10
24秒前
香香丿完成签到 ,获得积分10
25秒前
26秒前
26秒前
倪小呆完成签到 ,获得积分10
29秒前
keepory86完成签到,获得积分10
31秒前
terryok完成签到 ,获得积分10
31秒前
琉璃岁月完成签到,获得积分10
32秒前
晚意意意意意完成签到 ,获得积分10
32秒前
34秒前
Gyy完成签到,获得积分10
34秒前
向阳生长的花完成签到 ,获得积分10
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804283
求助须知:如何正确求助?哪些是违规求助? 3349074
关于积分的说明 10341425
捐赠科研通 3065204
什么是DOI,文献DOI怎么找? 1682984
邀请新用户注册赠送积分活动 808587
科研通“疑难数据库(出版商)”最低求助积分说明 764600