A multi-action deep reinforcement learning framework for flexible Job-shop scheduling problem

计算机科学 强化学习 人工智能 调度(生产过程) 作业车间调度 马尔可夫决策过程 图形 工作车间 水准点(测量) 数学优化 机器学习 地铁列车时刻表 马尔可夫过程 流水车间调度 理论计算机科学 数学 操作系统 统计 大地测量学 地理
作者
Kun Lei,Peng Guo,Wenchao Zhao,Yi Wang,Linmao Qian,Xiangyin Meng,Liansheng Tang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117796-117796 被引量:149
标识
DOI:10.1016/j.eswa.2022.117796
摘要

This paper presents an end-to-end deep reinforcement framework to automatically learn a policy for solving a flexible Job-shop scheduling problem (FJSP) using a graph neural network. In the FJSP environment, the reinforcement agent needs to schedule an operation belonging to a job on an eligible machine among a set of compatible machines at each timestep. This means that an agent needs to control multiple actions simultaneously. Such a problem with multi-actions is formulated as a multiple Markov decision process (MMDP). For solving the MMDPs, we propose a multi-pointer graph networks (MPGN) architecture and a training algorithm called multi-Proximal Policy Optimization (multi-PPO) to learn two sub-policies, including a job operation action policy and a machine action policy to assign a job operation to a machine. The MPGN architecture consists of two encoder-decoder components, which define the job operation action policy and the machine action policy for predicting probability distributions over different operations and machines, respectively. We introduce a disjunctive graph representation of FJSP and use a graph neural network to embed the local state encountered during scheduling. The computational experiment results show that the agent can learn a high-quality dispatching policy and outperforms handcrafted heuristic dispatching rules in solution quality and meta-heuristic algorithm in running time. Moreover, the results achieved on random and benchmark instances demonstrate that the learned policies have a good generalization performance on real-world instances and significantly larger scale instances with up to 2000 operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助昭昭找不到采纳,获得10
1秒前
潇洒飞丹发布了新的文献求助10
1秒前
棣棣完成签到,获得积分10
2秒前
3秒前
嘻嘻完成签到,获得积分20
4秒前
甘草三七发布了新的文献求助10
4秒前
2248388622发布了新的文献求助10
4秒前
4秒前
西米发布了新的文献求助200
5秒前
冷傲的xu发布了新的文献求助10
7秒前
Lucas应助小东采纳,获得10
7秒前
噜啦噜啦发布了新的文献求助10
7秒前
8秒前
10秒前
Owen应助积极的可云采纳,获得10
10秒前
领导范儿应助猪猪宝宝采纳,获得10
10秒前
11秒前
11秒前
12秒前
李慧发布了新的文献求助10
13秒前
ddd完成签到,获得积分10
13秒前
14秒前
15秒前
蓝色天空完成签到,获得积分10
15秒前
16秒前
17秒前
活力惜寒完成签到,获得积分10
17秒前
Yukaze发布了新的文献求助10
17秒前
19秒前
Akim应助ccyrichard采纳,获得10
19秒前
大个应助冷傲的xu采纳,获得10
19秒前
小小怪发布了新的文献求助10
21秒前
小二郎应助1111采纳,获得10
21秒前
杨家辉完成签到,获得积分10
23秒前
牛牛眉目发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助150
25秒前
26秒前
CipherSage应助魔幻蓉采纳,获得10
27秒前
27秒前
Ly完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093