Three-dimensional pose detection method based on keypoints detection network for tomato bunch

人工智能 计算机视觉 计算机科学 最小边界框 过程(计算) 钥匙(锁) 匹配(统计) 点(几何) 数学 图像(数学) 统计 计算机安全 操作系统 几何学
作者
Fan Zhang,Jin Gao,Hang Zhou,Junxiong Zhang,Kunlin Zou,Ting Yuan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:195: 106824-106824 被引量:34
标识
DOI:10.1016/j.compag.2022.106824
摘要

Non-destructive picking of fresh tomatoes is a delicate agronomical operation, based on comprehensive information about the plant organ, such as the location of stem, peduncle, and fruits. The matching between visual information supply and information demand from the agronomical technic is the key power to promote the picking robot from the laboratory to the field. The three-dimensional pose information, containing the location of each organ of the plant, can meet the demand of agronomical technic. It is the premise of precisely handling the cluster of fruits. In order to realize the fine tomato bunch harvesting operation in a bunch, this paper proposed a three-dimensional pose detection method for tomato bunch. The method, named Tomato Pose Method (TPM), is composed of a priori geometric model, a cascaded multi-task network, and a three-dimensional reconstruction process. Based on prior knowledge and agronomic technology, this prior geometric model comprehensively and flexibly describes the spatial location information of tomato bunch. The cascaded multi-task network is designed based on hourglass structure and transfer learning, which is suitable for bounding box and key point prediction of tomato bunches in complex environments. Finally, combining the prior geometric model and the spatial position information of each key point, the tomato bunch is reconstructed. Only a medium training dataset, containing 1800 RGBD images covering changing lighting, occlusion, and various poses, is needed for training. Its success rate of TPM on two-dimensional keypoint detection is 94.02%, the accuracy of 85.77% predicted points are at medium level. And 70.05% tomato bunch with multi-pose can be constructed. More importantly, this method only needs one RGBD image taken by a commercial camera to realize the three-dimensional reconstruction of a single-bunch scenario in 1.0 s, and a multi-bunch scenario in 2.0 s. It provides comprehensive information, and provides data basis for target positioning and path planning of picking robot, which makes the non-destructive harvesting possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两个我发布了新的文献求助10
刚刚
刚刚
涟涵发布了新的文献求助20
刚刚
akon完成签到,获得积分10
刚刚
负责之柔发布了新的文献求助20
刚刚
小马甲应助哈哈哈采纳,获得10
刚刚
libiqing77完成签到,获得积分10
刚刚
esther完成签到,获得积分10
1秒前
丁明淘完成签到,获得积分20
1秒前
852应助Frankll采纳,获得150
2秒前
夭夭发布了新的文献求助10
3秒前
lling完成签到 ,获得积分10
3秒前
八八关注了科研通微信公众号
3秒前
可达完成签到,获得积分10
4秒前
123关闭了123文献求助
4秒前
咋还发布了新的文献求助10
4秒前
周周完成签到,获得积分10
4秒前
6秒前
6秒前
lucky完成签到,获得积分10
6秒前
8秒前
kiyo完成签到,获得积分10
8秒前
小呵点完成签到 ,获得积分10
8秒前
8秒前
头文字H完成签到,获得积分10
9秒前
9秒前
儒雅谷芹完成签到,获得积分10
9秒前
hh完成签到,获得积分10
10秒前
tantan完成签到,获得积分10
10秒前
宋晓静完成签到,获得积分10
11秒前
科研通AI2S应助lzw采纳,获得10
11秒前
yaya完成签到 ,获得积分10
12秒前
舒适寒松发布了新的文献求助10
12秒前
valorb完成签到,获得积分0
12秒前
布丁发布了新的文献求助10
13秒前
hrs发布了新的文献求助10
13秒前
充电宝应助tantan采纳,获得10
14秒前
hh完成签到,获得积分10
14秒前
彬彬完成签到,获得积分10
14秒前
龙华之士发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946395
求助须知:如何正确求助?哪些是违规求助? 3491506
关于积分的说明 11061043
捐赠科研通 3222453
什么是DOI,文献DOI怎么找? 1780998
邀请新用户注册赠送积分活动 866010
科研通“疑难数据库(出版商)”最低求助积分说明 800105