光化学
紧身衣
单线态氧
量子产额
化学
激发态
三重态
磷光
闪光光解
单重态裂变
单重态
超快激光光谱学
荧光
氧气
分子
反应速率常数
激光器
原子物理学
有机化学
动力学
物理
光学
量子力学
作者
Wenbin Hu,Rui Zhang,Xian‐Fu Zhang,Jiatian Liu,Lin Luo
标识
DOI:10.1016/j.saa.2022.120965
摘要
We have systematically examined the formation of singlet oxygen O2(1Δg), the excited triplet state (T1), and excited singlet state (S1) for halogenated BODIPY photosensitizers (halogen = Cl, Br, and I) in eight solvents to understand how halogen atoms and solvent affect these properties. The phosphorescence spectra and lifetimes of singlet oxygen generated by these halogenated BODIPYs have been measured by steady state/time resolved NIR emission, while the formation quantum yield of singlet oxygen (ΦΔ) has been determined by chemical method using diphenylisobenzofuran (DPBF) as the trapping agent. The formation quantum yield ΦΔ of singlet oxygen can be as high as 0.96 for iodinated BODIPY and 0.71 for brominated BODIPY. The triplet state T1 absorption spectra of brominated and iodinated BODIPYs have been recorded by laser flash photolysis method, in which T1 shows high formation efficiency and long lifetime. The formation and decay of excited singlet state S1 of four BODIPYs have been measured by ground state (S0) absorption and steady state/time resolved fluorescence. The results show that larger halogen atoms on BODIPY core lead to smaller fluorescence quantum yield, shorter fluorescence lifetime and higher singlet oxygen formation quantum yield due to heavy atom effect that promotes the formation of triplet state. On the other hand, higher solvent polarity causes lower singlet oxygen formation quantum yield, smaller fluorescence quantum yield, and shorter fluorescence lifetime. This solvent effect is explained by the presence of photoinduced charge transfer (ICT) process from halogen atoms to BODIPY. The ICT efficiency has been estimated and the results are agreed with ICT theory. ICT process in halogenated BODIPYs has never been revealed in literature. HOMO/LUMO obtained from DFT calculation also supports the presence of ICT. The involvement of ICT in the photosensitizing process of halogenated BODIPYs provides new insights for designing BODIPY photosensitizers for photodynamic therapy of tumor.
科研通智能强力驱动
Strongly Powered by AbleSci AI