A review of fusion methods for omics and imaging data

组学 计算机科学 预处理器 传感器融合 人工智能 机器学习 领域(数学) 数据科学 数据挖掘 生物信息学 生物 数学 纯数学
作者
Weixian Huang,Kaiwen Tan,Ziye Zhang,Jinlong Hu,Shoubin Dong
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 74-93 被引量:14
标识
DOI:10.1109/tcbb.2022.3143900
摘要

The development of omics data and biomedical images has greatly advanced the progress of precision medicine in diagnosis, treatment, and prognosis. The fusion of omics and imaging data, i.e., omics-imaging fusion, offers a new strategy for understanding complex diseases. However, due to a variety of issues such as the limited number of samples, high dimensionality of features, and heterogeneity of different data types, efficiently learning complementary or associated discriminative fusion information from omics and imaging data remains a challenge. Recently, numerous machine learning methods have been proposed to alleviate these problems. In this review, from the perspective of fusion levels and fusion methods, we first provide an overview of preprocessing and feature extraction methods for omics and imaging data, and comprehensively analyze and summarize the basic forms and variations of commonly used and newly emerging fusion methods, along with their advantages, disadvantages and the applicable scope. We then describe public datasets and compare experimental results of various fusion methods on the ADNI and TCGA datasets. Finally, we discuss future prospects and highlight remaining challenges in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇samm完成签到,获得积分10
3秒前
guoyx完成签到,获得积分10
3秒前
大力初珍完成签到 ,获得积分10
4秒前
善学以致用应助invisiable采纳,获得10
4秒前
科研通AI5应助Simoody采纳,获得10
5秒前
5秒前
小蘑菇应助明天采纳,获得10
5秒前
6秒前
领导范儿应助张姣姣采纳,获得10
6秒前
7秒前
7秒前
独行侠完成签到,获得积分10
8秒前
无花果应助zhuang666采纳,获得10
8秒前
8秒前
灬灬发布了新的文献求助10
9秒前
小轩窗zst发布了新的文献求助10
12秒前
JJ发布了新的文献求助10
13秒前
xiaofan1991完成签到,获得积分10
13秒前
14秒前
zzuzll完成签到,获得积分10
14秒前
无限小珍发布了新的文献求助30
14秒前
爱笑的秋寒完成签到,获得积分10
15秒前
16秒前
wang给wang的求助进行了留言
16秒前
invisiable完成签到,获得积分10
17秒前
田様应助Nikii采纳,获得10
17秒前
Singularity应助甜甜的以筠采纳,获得10
19秒前
彭于晏应助甜甜的以筠采纳,获得10
19秒前
科研通AI5应助甜甜的以筠采纳,获得10
19秒前
科研通AI5应助甜甜的以筠采纳,获得10
19秒前
Owen应助甜甜的以筠采纳,获得10
19秒前
在水一方应助完美芹采纳,获得10
19秒前
哈哈Int完成签到,获得积分10
20秒前
zhuang666完成签到,获得积分10
20秒前
20秒前
张姣姣发布了新的文献求助10
21秒前
小马甲应助JJ采纳,获得10
22秒前
22秒前
yinger1984完成签到,获得积分10
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333