Micro Gas Turbine fault detection and isolation with a combination of Artificial Neural Network and off-design performance analysis

计算机科学 灵敏度(控制系统) 故障检测与隔离 人工神经网络 气体压缩机 噪音(视频) 航程(航空) 涡轮机 断层(地质) 汽车工程 降级(电信) 可靠性工程 电子工程 人工智能 工程类 材料科学 机械工程 电信 地震学 执行机构 复合材料 地质学 图像(数学)
作者
S.S. Talebi,Ali Madadi,A. M. Tousi,Mehrdad Kiaee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:113: 104900-104900 被引量:19
标识
DOI:10.1016/j.engappai.2022.104900
摘要

Recently Micro Gas Turbines deployment in smart grids is growing, which increases engine load change during its lifecycle; consequently, lifetime reduces faster, and diagnostics is more highlighted. Engine complex dynamic limits studies to only system-level diagnostics at the full-load operation, whereas measurements’ uncertainties and gradual degradation are often neglected. This study proposes a diagnostics scheme to detect and isolate faults in a wide range of part loads and degradation in the presence of uncertainties. An off-design model of Micro Gas Turbine is developed, and uncertainties are considered for preparing a comprehensive training database. An artificial Neural Network is employed to understand the nonlinear correlation between measurements and components’ health state. Different sets of measurements are tested to minimize the number of required measurements. It demonstrates power, and shaft speed measuring is necessary for accurate detection. Moreover, to present appropriate fault isolation using power, shaft speed, exhaust temperature, compressor discharge pressure, and temperature are required. The study indicates diagnostics performance is not sensitive to load variety that exists in the database but shows considerable sensitivity to degradation severities variety. Noise level effects on diagnostics performance are investigated to evaluate the importance of sensors’ uncertainty considerations. It reveals that detection is not so sensitive to the noise level. However, isolation shows more sensitivity. The result demonstrates the high capability of the proposed approach for establishing system level and component level diagnostics in a broad operating range and dealing with measurements’ uncertainties engine high complexity and nonlinearity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Betty完成签到 ,获得积分10
4秒前
温暖的数据线完成签到 ,获得积分10
6秒前
8秒前
萝卜发布了新的文献求助10
8秒前
笨笨摇伽完成签到,获得积分10
8秒前
Sinner完成签到,获得积分10
8秒前
小柒发布了新的文献求助10
14秒前
大胆盼烟完成签到,获得积分10
18秒前
平常的可乐完成签到 ,获得积分10
19秒前
sensAn发布了新的文献求助10
21秒前
自然的清涟应助tcyyswdsh采纳,获得10
23秒前
Jasper应助Sinner采纳,获得10
31秒前
31秒前
33秒前
yihaiqin完成签到 ,获得积分10
34秒前
绵绵发布了新的文献求助10
35秒前
北风应助宗师算个瓢啊采纳,获得10
36秒前
小二郎应助囧囧囧采纳,获得10
38秒前
38秒前
无花果应助Sinner采纳,获得10
38秒前
Cll完成签到 ,获得积分10
39秒前
Ava应助宗师算个瓢啊采纳,获得10
43秒前
大鼻子发布了新的文献求助10
45秒前
慕青应助Sinner采纳,获得10
46秒前
Luloo发布了新的文献求助10
46秒前
50秒前
54秒前
lu关闭了lu文献求助
56秒前
拼搏荧发布了新的文献求助10
57秒前
lu完成签到,获得积分10
1分钟前
oxs完成签到 ,获得积分10
1分钟前
哭泣嵩完成签到,获得积分10
1分钟前
所所应助科研小萌新采纳,获得10
1分钟前
SYLH应助卢敏明采纳,获得10
1分钟前
1分钟前
Bonnienuit完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科目三应助一一一采纳,获得10
1分钟前
高分求助中
Calogero—Moser—Sutherland Systems 666
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800724
求助须知:如何正确求助?哪些是违规求助? 3346204
关于积分的说明 10328503
捐赠科研通 3062675
什么是DOI,文献DOI怎么找? 1681117
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646