量子点
异质结
光伏
多激子产生
纳米技术
材料科学
量子点激光器
量子点太阳电池
激子
太阳能电池
接受者
量子
光电子学
聚合物太阳能电池
半导体
物理
光伏系统
凝聚态物理
量子力学
生物
半导体激光器理论
生态学
作者
Zhenyu Yang,James Fan,Andrew H. Proppe,F. Pelayo Garcı́a de Arquer,David Rossouw,Oleksandr Voznyy,Xinzheng Lan,Min Liu,Grant Walters,Rafael Quintero-Bermúdez,Bin Sun,Sjoerd Hoogland,Gianluigi A. Botton,Shana O. Kelley,Edward H. Sargent
标识
DOI:10.1038/s41467-017-01362-1
摘要
Colloidal quantum dots are emerging solution-processed materials for large-scale and low-cost photovoltaics. The recent advent of quantum dot inks has overcome the prior need for solid-state exchanges that previously added cost, complexity, and morphological disruption to the quantum dot solid. Unfortunately, these inks remain limited by the photocarrier diffusion length. Here we devise a strategy based on n- and p-type ligands that judiciously shifts the quantum dot band alignment. It leads to ink-based materials that retain the independent surface functionalization of quantum dots, and it creates distinguishable donor and acceptor domains for bulk heterojunctions. Interdot carrier transfer and exciton dissociation studies confirm efficient charge separation at the nanoscale interfaces between the two classes of quantum dots. We fabricate the first mixed-quantum-dot solar cells and achieve a power conversion of 10.4%, which surpasses the performance of previously reported bulk heterojunction quantum dot devices fully two-fold, indicating the potential of the mixed-quantum-dot approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI