数学
独特性
李普希茨连续性
拉回吸引子
吸引子
数学分析
π的近似
趋同(经济学)
随机微分方程
应用数学
纳维-斯托克斯方程组
物理
压缩性
经济增长
热力学
经济
作者
Anhui Gu,Kening Lu,Bixiang Wang
摘要
In this paper, we investigate the asymptotic behavior of the solutions of the two-dimensional stochastic Navier-Stokes equations via the stationary Wong-Zakai approximations given by the Wiener shift. We prove the existence and uniqueness of tempered pullback attractors for the random equations of the Wong-Zakai approximations with a Lipschitz continuous diffusion term. Under certain conditions, we also prove the convergence of solutions and random attractors of the approximate equations when the step size of approximations approaches zero.
科研通智能强力驱动
Strongly Powered by AbleSci AI