Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography

材料科学 阳极 纳米孔 分层(地质) 介观物理学 锂(药物) 离子 复合材料 电极 纳米技术 光电子学 构造学 生物 医学 物理 内分泌学 物理化学 古生物学 量子力学 化学 俯冲
作者
Chonghang Zhao,Takeshi Wada,Vincent De Andrade,Doğa Gürsoy,Hidemi Kato,Yu‐chen Karen Chen‐Wiegart
出处
期刊:Nano Energy [Elsevier BV]
卷期号:52: 381-390 被引量:127
标识
DOI:10.1016/j.nanoen.2018.08.009
摘要

Abstract Nanostructured silicon with its high theoretical capacity and ability to accommodate volume expansion has attracted great attention as a promising anode material for Lithium ion (Li-ion) batteries. Liquid metal dealloying method, is a novel method to create nanoporous silicon (np-Si). The assembled Li-ion batteries based on such np-Si anode can be cycled beyond 1500 cycles, in 1000 mA h/g constant capacity cycling mode with consistent performance; however, it suffers from degradation after ~ 460 cycles, while being cycled under 2000 mA h/g. To reveal the failure mechanism and differences in the morphological evolution in different capacity cycling modes in the np-Si anode, we conducted synchrotron X-ray nano-tomography studies. The three dimensional (3D) morphological evolution was visualized and quantified as a function of the number of cycles and cycling capacities. By comparing the 3D morphology under each cycling condition and correlating these 3D morphological changes with cycling-life performance, we elucidate the failure mechanism of the np-Si electrodes resulting from a mesoscopic to macroscopic deformation, involving volume expansion and gradual delamination. In particular, the shorter cycling life in higher-capacity cycling mode stems from particle agglomeration. Overall, while the nanoporous structure can accommodate the volume expansion locally, these mesoscopic and macroscopic deformations ultimately result in heterogeneous stress distribution with faster delamination. The work thus sheds the light on the importance to consider the structural evolution at the mesoscopic and macroscopic scales, while designing nano-structured energy storage materials for enhanced performances, particularly for long cycling-life durability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyh发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
4秒前
英俊的铭应助Li采纳,获得10
4秒前
6秒前
XQ完成签到,获得积分20
6秒前
9秒前
9秒前
glimmer发布了新的文献求助10
9秒前
9秒前
科目三应助XQ采纳,获得10
10秒前
11秒前
天天向上发布了新的文献求助10
15秒前
情怀应助moonnight采纳,获得10
16秒前
16秒前
赵云江完成签到,获得积分10
17秒前
dilibolaba完成签到 ,获得积分10
18秒前
Li发布了新的文献求助10
21秒前
fuchao发布了新的文献求助10
21秒前
venger发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
24秒前
珊珊来迟完成签到,获得积分10
27秒前
顾矜应助啦啦啦采纳,获得10
30秒前
Ava应助曹梦龙采纳,获得10
31秒前
crazy发布了新的文献求助10
31秒前
venger完成签到,获得积分10
32秒前
34秒前
风起人散完成签到,获得积分10
35秒前
36秒前
36秒前
等待的砖家完成签到,获得积分10
37秒前
37秒前
无敌暴龙战神完成签到,获得积分10
38秒前
39秒前
大气的剑鬼完成签到,获得积分20
39秒前
可爱的英姑完成签到,获得积分10
39秒前
40秒前
Mo应助ljydhr采纳,获得10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277082
求助须知:如何正确求助?哪些是违规求助? 3805836
关于积分的说明 11924716
捐赠科研通 3452559
什么是DOI,文献DOI怎么找? 1893568
邀请新用户注册赠送积分活动 943620
科研通“疑难数据库(出版商)”最低求助积分说明 847513