A549电池
化学
共轭体系
赫拉
PEG比率
蛋白激酶B
生物物理学
癌症研究
细胞
生物化学
细胞凋亡
生物
有机化学
财务
经济
聚合物
作者
Xinwei Cheng,Dao‐Rui Yu,Guang Cheng,Bryant C. Yung,Yang Liu,Hewen Li,Kang Chen,Xingyue Fang,Shuhong Tian,Xiaoju Zhou,Qibing Liu,Robert J. Lee
标识
DOI:10.1021/acs.molpharmaceut.8b00696
摘要
Expression of Bcl-2 and Akt-1 has been associated with human cancer. G3139 and RX-0201, targeting Bcl-2 and Akt-1, respectively, are antisense oligonucleotides (ASOs) that have shown limited efficacy in clinical trials. Herein, we report a combination of newly designed ASOs based on these agents and was delivered by tumor cell-targeting lipid nanoparticles (LNPs). A "Gapmer" design strategy was applied to these ASOs with the addition of 2'-O-methyl modifications on the nucleotides at 5' and 3' ends. A dual-channel syringe pump-based system was developed for the synthesis of the LNPs. ASO-LNPs composed of DODMA, egg PC, cholesterol, T7-PEG-DSPE, and PEG-DMG at a molar ratio of 35:39.5:20:0.5:5 and carrying either individual ASOs or co-loaded ASO combinations (Co-ASOs) were synthesized and evaluated in both KB and A549 cancer cells and in an A549 murine xenograft model to determine their antitumor effects and biological activities. The ASO-LNPs exhibited excellent colloidal stability and high ASO encapsulation efficiency with relatively small mean particle sizes and moderately positive zeta potentials. Transferrin receptor-targeting T7-conjugated LNPs showed enhanced cellular uptake compared to nontargeted LNPs. In addition, both T7-conjugated Co-ASOs-LNPs and non-T7-conjugated Co-ASOs-LNPs at a molar ratio of (G3139-GAP to RX-0201-GAP at 1:2) showed efficient downregulation of both Bcl-2 and Akt-1 in both A549 and KB cells. Furthermore, T7-conjugated Co-ASOs-LNPs (Co-ASOs-LNPs) produced superior antitumor activity, prolonged the overall survival time, and demonstrated tumor targeting activity in an A549 xenograft model.
科研通智能强力驱动
Strongly Powered by AbleSci AI