信号(编程语言)
学习迁移
计算机科学
调制(音乐)
模式识别(心理学)
人工智能
语音识别
信噪比(成像)
特征(语言学)
特征提取
噪音(视频)
时域
领域(数学分析)
频率调制
声学
无线电频率
电信
计算机视觉
数学
物理
数学分析
语言学
哲学
图像(数学)
程序设计语言
作者
Wensheng Lin,Dibo Hou,Junsheng Huang,Lixin Li,Zhu Han
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2023-09-01
卷期号:72 (9): 12391-12395
标识
DOI:10.1109/tvt.2023.3267270
摘要
This letter proposes a transfer learning model for automatic modulation recognition (AMR) with only a few modulated signal samples. The transfer model is trained with the audio signal UrbanSound8K as the source domain, and then fine-tuned with a few modulated signal samples as the target domain. For improving the classification performance, the signal-to-noise ratio (SNR) is utilized as a feature to facilitate the classification of signals. Simulation results indicate that the transfer model has a significant superiority in terms of classification accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI