Evolutionary Multi-Objective Optimization in Searching for Various Antimicrobial Peptides [Feature]

抗菌肽 计算机科学 人工智能 抗菌剂 计算生物学 机器学习 生物 微生物学
作者
Yiping Liu,Xinyi Zhang,Yuansheng Liu,Yansen Su,Xiangxiang Zeng,Gary G. Yen
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 31-45 被引量:9
标识
DOI:10.1109/mci.2023.3245731
摘要

Antimicrobial peptides (AMPs), which are parts of the innate immune response found among all classes of life, are promising in broad-spectrum antibiotics and drug-resistant infection treatments. Although AMPs effectively kill bacteria, numerous AMPs widely distributed in the sequence space remain unknown to humans. Therefore, the de novo design of AMPs involves the exploration of vast sequence space to identify peptides with high antimicrobial activity and good diversity among the known AMPs. Computational intelligence approaches have successfully identified some AMPs; however, most of them fail to address the diversity of the obtained AMPs. This paper reports an evolutionary multi-objective approach for AMP design to optimize both the antimicrobial activity and diversity among identified AMPs. Our approach employs a deep learning model to predict a peptide's antimicrobial activity and a niche sharing method to estimate a peptide's density. Then, an evolutionary multi-objective algorithm is presented to simultaneously optimize the objectives of antimicrobial activity and diversity. The algorithm takes the advantage of a decomposition-based framework to search for AMPs with good diversity. These AMPs are collected by an elite archive during the evolution process. Moreover, a local search strategy is applied to enhance the quality of the identified AMPs. The experimental results show that the proposed approach outperforms the state-of-the-art designs in searching for various AMPs. The AMPs generated by the proposed approach have high antimicrobial activities and are distinct from each other and among the AMPs in the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hohowinnie发布了新的文献求助10
刚刚
Kate发布了新的文献求助10
2秒前
bwl发布了新的文献求助10
3秒前
以七完成签到,获得积分10
3秒前
3秒前
SYLH应助开放磬采纳,获得10
7秒前
德鲁大叔完成签到,获得积分10
7秒前
linhante完成签到 ,获得积分10
9秒前
今后应助词语采纳,获得10
11秒前
11秒前
EthanLu发布了新的文献求助10
11秒前
科研通AI5应助Kate采纳,获得10
13秒前
素和姣姣完成签到,获得积分10
15秒前
⊙▽⊙发布了新的文献求助30
15秒前
Grit完成签到 ,获得积分10
17秒前
17秒前
李健应助薛华倩采纳,获得10
18秒前
20秒前
YY完成签到 ,获得积分10
20秒前
21秒前
puhu应助猪猪hero采纳,获得10
22秒前
Hohowinnie完成签到,获得积分10
22秒前
中旬日发布了新的文献求助10
24秒前
王诗禹关注了科研通微信公众号
24秒前
不知名帅哥完成签到,获得积分10
27秒前
28秒前
温暖幻桃发布了新的文献求助10
28秒前
29秒前
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
31秒前
zyy6657完成签到,获得积分10
32秒前
秦月未完完成签到,获得积分10
32秒前
鱼秋完成签到,获得积分10
32秒前
会魔法的老人完成签到,获得积分10
32秒前
33秒前
薛华倩发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979