Unscented Kalman filter with performance recovery strategy for parameter estimation of isolation structures

协方差 控制理论(社会学) 分歧(语言学) 卡尔曼滤波器 扩展卡尔曼滤波器 噪音(视频) 滤波器(信号处理) 残余物 理论(学习稳定性) 协方差交集 计算机科学 数学 统计 算法 人工智能 机器学习 语言学 哲学 控制(管理) 图像(数学) 计算机视觉
作者
Xinhao He,Shigeki Unjoh,Dan Li
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:8
标识
DOI:10.1002/stc.3116
摘要

After a strong earthquake, it is crucial to evaluate accurately the health of structures in order to decide whether they can continue to be used. Isolation techniques are well known for enhancing the seismic performance of structures; however, a large response displacement anticipated in the design will likely impact the expansion joints. The occurrence of any damage or impact involves a large disturbance in the system or measurement equations. The Kalman filter (KF) is effective and reliable under proper conditions, but a simple simulation may show disrupted stability conditions after a large disturbance, causing a temporary filter divergence. If the filter design cannot be rapidly adjusted, an overall filter divergence may occur, preventing an accurate evaluation of structural health. This study proposes a performance recovery strategy for the unscented KF (UKF). Rather than identifying optimal parameter estimates at the current instant, the filter meets the stability conditions and asymptotically approaches the true estimates. The measurement noise is adaptively adjusted to bound the true noise covariance. Once the filter divergence is identified based on the expected measurement residual error, the state covariance is adjusted by a covariance-matching technique to bound the true error covariance. After sufficient measurements are obtained, the state covariance is reduced to a low level, indicating filter convergence and a reliable estimation. The effectiveness of the proposed approach is numerically validated for an isolation bridge and building under several scenarios, and two existing UKF variants, which adaptively estimate the system and measurement noise covariances, are compared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowutongxue完成签到,获得积分10
1秒前
钱仙人发布了新的文献求助10
2秒前
爆米花应助5High_0采纳,获得10
2秒前
粗犷的思真完成签到,获得积分10
2秒前
当呼吸化为空气完成签到,获得积分10
3秒前
3秒前
4秒前
forory完成签到,获得积分10
4秒前
桑葚啊发布了新的文献求助10
5秒前
YYY发布了新的文献求助10
5秒前
6秒前
7秒前
zy发布了新的文献求助30
8秒前
8秒前
一块儿月饼完成签到,获得积分10
9秒前
9秒前
Archer完成签到,获得积分10
9秒前
10秒前
11秒前
姐姐发布了新的文献求助10
11秒前
酷波er应助forory采纳,获得10
12秒前
12秒前
桑葚啊完成签到,获得积分20
12秒前
丘比特应助典雅的友安采纳,获得10
14秒前
陈cc发布了新的文献求助20
14秒前
15秒前
斯丹康发布了新的文献求助30
15秒前
15秒前
16秒前
正科发布了新的文献求助10
17秒前
18秒前
陈某发布了新的文献求助10
18秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
姐姐完成签到,获得积分10
19秒前
汉堡包应助chelsea采纳,获得30
19秒前
19秒前
苹果萧完成签到 ,获得积分10
19秒前
20秒前
ding应助贾舒涵采纳,获得10
20秒前
共享精神应助scc采纳,获得30
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787413
求助须知:如何正确求助?哪些是违规求助? 3332990
关于积分的说明 10258680
捐赠科研通 3048421
什么是DOI,文献DOI怎么找? 1673117
邀请新用户注册赠送积分活动 801623
科研通“疑难数据库(出版商)”最低求助积分说明 760308