Bandwidth-aware adaptive chirp mode decomposition for railway bearing fault diagnosis

啁啾声 带宽(计算) 振动 方位(导航) 计算机科学 信号(编程语言) 电子工程 过滤器组 频带 控制理论(社会学) 滤波器(信号处理) 工程类 声学 物理 电信 人工智能 程序设计语言 光学 激光器 控制(管理) 计算机视觉
作者
Shiqian Chen,Lanping Guo,Junfeng Fan,Yi Cai,Kaiyun Wang,Wanming Zhai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:: 147592172311746-147592172311746
标识
DOI:10.1177/14759217231174699
摘要

It is a challenging task to accurately diagnose a railway bearing fault since bearing vibration signals are under strong interferences from wheel–rail excitations. The commonly used Kurtogram-based methods are often trapped in components induced by the wheel–rail excitations while adaptive mode decomposition methods are sensitive to input control parameters. To address these issues, based on a recently developed powerful signal decomposition method, that is, adaptive chirp mode decomposition (ACMD), a novel method called bandwidth-aware ACMD (BA-ACMD) is proposed in this article. First, the filter bank property of ACMD is thoroughly analyzed based on Monte-Carlo simulation and then a bandwidth expression with respect to the penalty parameter is first obtained by fitting a power law model. Then, a weighted spectrum trend (WST) method is proposed to partition frequency bands and then guide the parameter determination of ACMD through the integration of the obtained bandwidth expression. In addition, according to the order of magnitude of the WST in each band, the BA-ACMD adopts a recursive framework to extract signal modes one by one. In this way, dominating signal modes related to wheel–rail excitations can be extracted and then subtracted from the vibration signal in advance so that the bearing faults induced signal modes can be successfully identified. Both simulation and experimental validations are conducted showing that BA-ACMD can effectively detect single and compound faults of railway bearings under strong wheel–rail excitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding完成签到,获得积分10
2秒前
烟花应助大秀子采纳,获得10
3秒前
脑洞疼应助包容沛蓝采纳,获得10
3秒前
大个应助Fu采纳,获得10
4秒前
khaosyi完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
13201099463完成签到,获得积分10
9秒前
急急急完成签到,获得积分10
11秒前
11秒前
ww发布了新的文献求助10
12秒前
lin完成签到,获得积分10
12秒前
细心枫叶发布了新的文献求助10
13秒前
14秒前
Lucas应助123456杯可乐采纳,获得10
15秒前
凯卮完成签到,获得积分10
16秒前
17秒前
song发布了新的文献求助10
17秒前
Hello应助gf采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
liuz53发布了新的文献求助10
19秒前
SYLH应助科研通管家采纳,获得30
19秒前
烟花应助科研通管家采纳,获得10
20秒前
20秒前
大个应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
flyfish完成签到,获得积分10
21秒前
lsq108发布了新的文献求助10
22秒前
Silverexile完成签到,获得积分10
22秒前
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377507
关于积分的说明 10498840
捐赠科研通 3096984
什么是DOI,文献DOI怎么找? 1705397
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123