PrivaTree: Collaborative Privacy-Preserving Training of Decision Trees on Biomedical Data

可解释性 计算机科学 决策树 可用的 机器学习 人工智能 树(集合论) 数据挖掘 决策树学习 数据科学 万维网 数学分析 数学
作者
Yamane El Zein,Mathieu Lemay,Kévin Huguenin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 1-13 被引量:6
标识
DOI:10.1109/tcbb.2023.3286274
摘要

Biomedical data generation and collection have become faster and more ubiquitous. Consequently, datasets are increasingly spread across hospitals, research institutions, or other entities. Exploiting such distributed datasets simultaneously can be beneficial; in particular, classification using machine learning models such as decision trees is becoming increasingly common and important. However, given that biomedical data is highly sensitive, sharing data records across entities or centralizing them in one location are often prohibited due to privacy concerns or regulations. We design PrivaTree, an efficient and privacy-preserving protocol for collaborative training of decision tree models on distributed, horizontally partitioned, biomedical datasets. Although decision tree models may not always be as accurate as neural networks, they have better interpretability and are helpful in decision-making processes, which are crucial for biomedical applications. PrivaTree follows a federated learning approach, where raw data is not shared, and where every data provider computes updates to a global decision tree model being trained, on their private dataset. This is followed by privacy-preserving aggregation of these updates using additive secret-sharing, in order to collaboratively update the model. We implement PrivaTree, and evaluate its computational and communication efficiency on three different biomedical datasets, as well as the accuracy of the resulting models. Compared to the model centrally trained on all data records, the obtained collaborative model presents a modest loss of accuracy, while consistently outperforming the accuracy of the local models, trained separately by each data provider. Moreover, PrivaTree is more efficient than existing solutions, which makes it usable for training decision trees with numerous nodes, on large complex datasets, with both continuous and categorical attributes, as often found in the biomedical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goldNAN完成签到,获得积分10
刚刚
雪白的山河完成签到,获得积分10
刚刚
啊啊啊完成签到,获得积分10
1秒前
1秒前
1秒前
czj完成签到,获得积分0
2秒前
llllll发布了新的文献求助10
2秒前
钟叉烧完成签到,获得积分10
2秒前
孙博发布了新的文献求助10
2秒前
2秒前
随随完成签到 ,获得积分10
2秒前
3秒前
2025迷完成签到 ,获得积分10
3秒前
Stella应助淡定的笙采纳,获得30
3秒前
安的沛白完成签到,获得积分10
3秒前
一台小钢炮完成签到,获得积分10
3秒前
李娇完成签到 ,获得积分10
4秒前
张巨锋完成签到,获得积分10
5秒前
5秒前
AAAAA完成签到,获得积分10
6秒前
小吴完成签到,获得积分20
6秒前
6秒前
7秒前
7秒前
Active完成签到,获得积分10
7秒前
chdhg完成签到 ,获得积分10
7秒前
杰bro完成签到,获得积分10
8秒前
认真子默完成签到,获得积分10
8秒前
大模型应助sui采纳,获得10
8秒前
跳跃凡桃完成签到 ,获得积分10
8秒前
9秒前
felix完成签到,获得积分10
9秒前
adai完成签到,获得积分10
9秒前
nasya发布了新的文献求助10
10秒前
fei发布了新的文献求助30
10秒前
科研通AI6应助zhuzhu采纳,获得10
10秒前
cc完成签到,获得积分10
10秒前
FashionBoy应助llllll采纳,获得10
11秒前
等待毛豆完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402127
求助须知:如何正确求助?哪些是违规求助? 4520699
关于积分的说明 14081460
捐赠科研通 4434175
什么是DOI,文献DOI怎么找? 2434395
邀请新用户注册赠送积分活动 1426608
关于科研通互助平台的介绍 1405367