Loader: A Log Anomaly Detector Based on Transformer

子串 计算机科学 异常检测 数据挖掘 算法 模式识别(心理学) 集合(抽象数据类型) 人工智能 程序设计语言
作者
Tong Xiao,Zhe Quan,Zhi-Jie Wang,Yuquan Le,Yunfei Du,Xiangke Liao,Kenli Li,Keqin Li
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (5): 3479-3492 被引量:7
标识
DOI:10.1109/tsc.2023.3280575
摘要

Detecting anomalies in logs is crucial for service and system management, since logs are widely used to record the runtime status, and are often the only data available for postmortem analysis. Since anomalies are usually rare in real-world services and systems, a common and feasible practice is to mine or learn normal patterns from logs, and deem those violating the normal patterns as anomalies. As log sequences are a kind of time series data, RNN (Recurrent Neural Network) and its variants have been extensively employed to capture the normal patterns. Nevertheless, the sequential nature of RNN and its variants makes them hard to parallelize and capture long-term dependencies, which may hinder their performance. To address this issue, in this paper we propose Loader, a novel semi-supervised lo g a nomaly d etector based on Transform er , because the Transformer architecture eschews recurrence and is able to draw global dependencies. Loader leverages the Transformer encoder to capture normal patterns from normal log sequences. When detecting, it gives a set of candidate log templates, that may appear after the input log substring under normal conditions. If the template of the actual next log message is not within the candidate set, this implies an anomaly. Previous similar methods select the most possible $k$ log templates as candidates in any case, so the performance is sensitive to $k$ , and it is nontrivial to pick a proper $k$ . To alleviate this, we design a more flexible and robust 'top- $p$ ' algorithm, which determines the candidate set based on the cumulative probability of the most possible log templates. Extensive experiments are conducted based on three public log datasets, the experimental results validate the effectiveness and competitiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CEJ发布了新的文献求助10
1秒前
Layla101发布了新的文献求助10
1秒前
Pfuz发布了新的文献求助50
2秒前
4秒前
是小高呀完成签到,获得积分20
4秒前
tan完成签到,获得积分10
6秒前
宁静发布了新的文献求助10
6秒前
醉熏的水绿完成签到 ,获得积分10
6秒前
刻苦人英完成签到,获得积分10
6秒前
Ava应助CEJ采纳,获得10
8秒前
sxwzssyj完成签到,获得积分10
11秒前
林少龙发布了新的文献求助50
11秒前
科研通AI6应助王炎大王采纳,获得10
12秒前
打打应助雪山飞狐采纳,获得10
12秒前
12秒前
伶俐的紫蓝完成签到,获得积分10
12秒前
13秒前
童宝完成签到,获得积分10
14秒前
观莲客完成签到,获得积分10
14秒前
隐形曼青应助stt采纳,获得10
15秒前
abc完成签到,获得积分10
15秒前
16秒前
李健的小迷弟应助LIFE2020采纳,获得10
17秒前
17秒前
17秒前
17秒前
沐浴清风完成签到,获得积分10
18秒前
现实的千万完成签到,获得积分20
18秒前
zhuyq发布了新的文献求助10
18秒前
研友_Lw7MKL完成签到,获得积分10
18秒前
小马甲应助ww采纳,获得10
19秒前
子寒发布了新的文献求助10
19秒前
在水一方应助ma采纳,获得10
19秒前
Zzhangoo发布了新的文献求助30
19秒前
海绵宝宝完成签到 ,获得积分10
19秒前
20秒前
Akim应助王铂然采纳,获得10
21秒前
21秒前
传奇3应助zhaoyali采纳,获得10
21秒前
科研小白发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
菊と刀 日本文化の型 230
Targeted Radiopharmaceuticals and Imaging: Development Challenges and Opportunities 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4366650
求助须知:如何正确求助?哪些是违规求助? 3865884
关于积分的说明 12053948
捐赠科研通 3508542
什么是DOI,文献DOI怎么找? 1925229
邀请新用户注册赠送积分活动 967416
科研通“疑难数据库(出版商)”最低求助积分说明 866611