Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis: A Systematic Review and Meta-Analysis

医学 荟萃分析 乳腺摄影术 技术 数字乳腺摄影术 层析合成 接收机工作特性 医学物理学 乳腺癌 乳房成像 队列研究 队列 放射科 诊断准确性 人工智能 核医学 内科学 癌症 计算机科学
作者
Jung Hyun Yoon,Fredrik Strand,Pascal Baltzer,Emily F. Conant,Fiona J. Gilbert,Constance D. Lehman,Elizabeth A. Morris,Lisa A. Mullen,Robert M. Nishikawa,Nisha Sharma,Ilse Vejborg,Linda Moy,Ritse M. Mann
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:75
标识
DOI:10.1148/radiol.222639
摘要

Background There is considerable interest in the potential use of artificial intelligence (AI) systems in mammographic screening. However, it is essential to critically evaluate the performance of AI before it can become a modality used for independent mammographic interpretation. Purpose To evaluate the reported standalone performances of AI for interpretation of digital mammography and digital breast tomosynthesis (DBT). Materials and Methods A systematic search was conducted in PubMed, Google Scholar, Embase (Ovid), and Web of Science databases for studies published from January 2017 to June 2022. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) values were reviewed. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 and Comparative (QUADAS-2 and QUADAS-C, respectively). A random effects meta-analysis and meta-regression analysis were performed for overall studies and for different study types (reader studies vs historic cohort studies) and imaging techniques (digital mammography vs DBT). Results In total, 16 studies that include 1 108 328 examinations in 497 091 women were analyzed (six reader studies, seven historic cohort studies on digital mammography, and four studies on DBT). Pooled AUCs were significantly higher for standalone AI than radiologists in the six reader studies on digital mammography (0.87 vs 0.81, P = .002), but not for historic cohort studies (0.89 vs 0.96, P = .152). Four studies on DBT showed significantly higher AUCs in AI compared with radiologists (0.90 vs 0.79, P < .001). Higher sensitivity and lower specificity were seen for standalone AI compared with radiologists. Conclusion Standalone AI for screening digital mammography performed as well as or better than radiologists. Compared with digital mammography, there is an insufficient number of studies to assess the performance of AI systems in the interpretation of DBT screening examinations. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Scaranelo in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助犹豫的怜珊采纳,获得10
刚刚
科研通AI5应助LLL采纳,获得10
刚刚
lwl发布了新的文献求助10
1秒前
2秒前
KComboN完成签到 ,获得积分10
2秒前
赘婿应助LeezZZZ采纳,获得10
3秒前
沉默的婴发布了新的文献求助10
3秒前
3秒前
3秒前
领导范儿应助任润采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
CodeCraft应助happy星采纳,获得10
7秒前
8秒前
8秒前
sunjr完成签到,获得积分10
8秒前
风清扬发布了新的文献求助150
9秒前
Orange应助不来也不去采纳,获得10
10秒前
10秒前
CodeCraft应助DEYING采纳,获得10
11秒前
11秒前
11秒前
熊尼发布了新的文献求助10
11秒前
12秒前
沉默的婴完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
13秒前
wanci应助dongqin采纳,获得10
13秒前
周少完成签到,获得积分10
14秒前
核桃发布了新的文献求助10
14秒前
14秒前
彭于晏应助sunjr采纳,获得10
15秒前
15秒前
yang完成签到 ,获得积分10
15秒前
zhaoty完成签到,获得积分10
16秒前
lllhk完成签到 ,获得积分10
16秒前
16秒前
LeezZZZ发布了新的文献求助10
16秒前
17秒前
aaaaaab发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676618
求助须知:如何正确求助?哪些是违规求助? 4054330
关于积分的说明 12537287
捐赠科研通 3748475
什么是DOI,文献DOI怎么找? 2070437
邀请新用户注册赠送积分活动 1099433
科研通“疑难数据库(出版商)”最低求助积分说明 979134