Video Summarization With Spatiotemporal Vision Transformer

自动汇总 计算机科学 编码器 人工智能 计算机视觉 剩余框架 帧(网络) 变压器 嵌入 参考坐标系 模式识别(心理学) 电信 物理 电压 量子力学 操作系统
作者
Tzu‐Chun Hsu,Yi-Sheng Liao,Chun-Rong Huang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3013-3026 被引量:27
标识
DOI:10.1109/tip.2023.3275069
摘要

Video summarization aims to generate a compact summary of the original video for efficient video browsing. To provide video summaries which are consistent with the human perception and contain important content, supervised learning-based video summarization methods are proposed. These methods aim to learn important content based on continuous frame information of human-created summaries. However, simultaneously considering both of inter-frame correlations among non-adjacent frames and intra-frame attention which attracts the humans for frame importance representations are rarely discussed in recent methods. To address these issues, we propose a novel transformer-based method named spatiotemporal vision transformer (STVT) for video summarization. The STVT is composed of three dominant components including the embedded sequence module, temporal inter-frame attention (TIA) encoder, and spatial intra-frame attention (SIA) encoder. The embedded sequence module generates the embedded sequence by fusing the frame embedding, index embedding and segment class embedding to represent the frames. The temporal inter-frame correlations among non-adjacent frames are learned by the TIA encoder with the multi-head self-attention scheme. Then, the spatial intra-frame attention of each frame is learned by the SIA encoder. Finally, a multi-frame loss is computed to drive the learning of the network in an end-to-end trainable manner. By simultaneously using both inter-frame and intra-frame information, our method outperforms state-of-the-art methods in both of the SumMe and TVSum datasets. The source code of the spatiotemporal vision transformer will be available at https://github.com/nchucvml/STVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy.he应助科研通管家采纳,获得10
刚刚
震震应助科研通管家采纳,获得20
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
wy.he应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
2秒前
zhutier完成签到,获得积分10
2秒前
2秒前
2秒前
如意草丛发布了新的文献求助10
4秒前
5秒前
7秒前
orixero应助伶俐元芹采纳,获得10
7秒前
9秒前
10秒前
仓鼠本鼠给仓鼠本鼠的求助进行了留言
10秒前
药学小团子完成签到,获得积分10
11秒前
11秒前
orixero应助103921wjk采纳,获得10
12秒前
清秀的初翠完成签到,获得积分10
12秒前
一支笔画天下完成签到,获得积分10
12秒前
妖孽的二狗完成签到 ,获得积分10
13秒前
麻生发布了新的文献求助10
14秒前
orixero应助ethyxwat采纳,获得10
14秒前
14秒前
苹果问晴发布了新的文献求助10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778170
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10215999
捐赠科研通 3039020
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758339