Epileptic Seizure Detection with an End-to-End Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model

计算机科学 阈值 模式识别(心理学) 灵敏度(控制系统) 人工智能 脑电图 假阳性率 癫痫 癫痫发作 滤波器(信号处理) 计算机视觉 图像(数学) 医学 电子工程 精神科 工程类
作者
Xingchen Dong,Yiming Wen,Dezan Ji,Shasha Yuan,Zhen Liu,Wei Shang,Weidong Zhou
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:34 (03) 被引量:12
标识
DOI:10.1142/s0129065724500126
摘要

Automatic seizure detection plays a key role in assisting clinicians for rapid diagnosis and treatment of epilepsy. In view of the parallelism of temporal convolutional network (TCN) and the capability of bidirectional long short-term memory (BiLSTM) in mining the long-range dependency of multi-channel time-series, we propose an automatic seizure detection method with a novel end-to-end TCN-BiLSTM model in this work. First, raw EEG is filtered with a 0.5-45 Hz band-pass filter, and the filtered data are input into the proposed TCN-BiLSTM network for feature extraction and classification. Post-processing process including moving average filtering, thresholding and collar technique is then employed to further improve the detection performance. The method was evaluated on two EEG database. On the CHB-MIT scalp EEG database, our method achieved a segment-based sensitivity of 94.31%, specificity of 97.13%, and accuracy of 97.09%. Meanwhile, an event-based sensitivity of 96.48% and an average false detection rate (FDR) of 0.38/h were obtained. On the SH-SDU database we collected, the segment-based sensitivity of 94.99%, specificity of 93.25%, and accuracy of 93.27% were achieved. In addition, an event-based sensitivity of 99.35% and a false detection rate of 0.54/h were yielded. The total detection time consumed for 1[Formula: see text]h EEG data was 5.65[Formula: see text]s. These results demonstrate the superiority and promising potential of the proposed method in real-time monitoring of epileptic seizures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ccl发布了新的文献求助20
1秒前
2秒前
2秒前
汉堡包应助蒋常伟采纳,获得10
3秒前
WESTBROOK发布了新的文献求助10
4秒前
废寝忘食完成签到,获得积分10
4秒前
4秒前
慕青应助是小杨呀采纳,获得10
4秒前
5秒前
6秒前
RA000发布了新的文献求助10
6秒前
yibo完成签到,获得积分10
8秒前
皮夏寒发布了新的文献求助10
8秒前
glowworm发布了新的文献求助10
8秒前
华仔应助小猪采纳,获得10
8秒前
9秒前
9秒前
ting5260发布了新的文献求助10
9秒前
JAYZHANG发布了新的文献求助10
9秒前
YOMU完成签到,获得积分10
10秒前
elysia发布了新的文献求助10
10秒前
清暗月华完成签到,获得积分10
11秒前
无情听南发布了新的文献求助10
11秒前
pcy完成签到,获得积分10
12秒前
ahu发布了新的文献求助30
12秒前
ding应助RA000采纳,获得10
12秒前
Akim应助皮夏寒采纳,获得10
12秒前
QQ完成签到,获得积分20
13秒前
EMMA发布了新的文献求助20
14秒前
orixero应助烂漫成仁采纳,获得10
14秒前
HAHA_完成签到,获得积分10
15秒前
善学以致用应助JAYZHANG采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
wanci应助腼腆的豆芽采纳,获得10
17秒前
ccm完成签到,获得积分10
17秒前
18秒前
20秒前
皮夏寒完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861048
求助须知:如何正确求助?哪些是违规求助? 3403350
关于积分的说明 10634883
捐赠科研通 3126589
什么是DOI,文献DOI怎么找? 1724117
邀请新用户注册赠送积分活动 830363
科研通“疑难数据库(出版商)”最低求助积分说明 779103