Study of radiomics based on dual-energy CT for nuclear grading and T-staging in renal clear cell carcinoma

医学 无线电技术 分级(工程) 肾细胞癌 放射科 核医学 肿瘤科 病理 土木工程 工程类
作者
Ning Wang,Bing Xue,Yuhan Li,Jian Yao,Zhengjun Dai,Dexin Yu,Aimei Ouyang
出处
期刊:Medicine [Wolters Kluwer]
卷期号:103 (10): e37288-e37288 被引量:2
标识
DOI:10.1097/md.0000000000037288
摘要

Introduction: Clear cell renal cell carcinoma (ccRCC) is the most lethal subtype of renal cell carcinoma with a high invasive potential. Radiomics has attracted much attention in predicting the preoperative T-staging and nuclear grade of ccRCC. Objective: The objective was to evaluate the efficacy of dual-energy computed tomography (DECT) radiomics in predicting ccRCC grade and T-stage while optimizing the models. Methods: 200 ccRCC patients underwent preoperative DECT scanning and were randomized into training and validation cohorts. Radiomics models based on 70 KeV, 100 KeV, 150 KeV, iodine-based material decomposition images (IMDI), virtual noncontrasted images (VNC), mixed energy images (MEI) and MEI + IMDI were established for grading and T-staging. Receiver operating characteristic analysis and decision curve analysis (DCA) were performed. The area under the curve (AUC) values were compared using Delong test. Results: For grading, the AUC values of these models ranged from 0.64 to 0.97 during training and from 0.54 to 0.72 during validation. In the validation cohort, the performance of MEI + IMDI model was optimal, with an AUC of 0.72, sensitivity of 0.71, and specificity of 0.70. The AUC value for the 70 KeV model was higher than those for the 100 KeV, 150 KeV, and MEI models. For T-staging, these models achieved AUC values of 0.83 to 1.00 in training and 0.59 to 0.82 in validation. The validation cohort demonstrated AUCs of 0.82 and 0.70, sensitivities of 0.71 and 0.71, and specificities of 0.80 and 0.60 for the MEI + IMDI and IMDI models, respectively. In terms of grading and T-staging, the MEI + IMDI model had the highest AUC in validation, with IMDI coming in second. There were statistically significant differences between the MEI + IMDI model and the 70 KeV, 100 KeV, 150 KeV, MEI, and VNC models in terms of grading ( P < .05) and staging ( P ≤ .001). DCA showed that both MEI + IDMI and IDMI models outperformed other models in predicting grade and stage of ccRCC. Conclusions: DECT radiomics models were helpful in grading and T-staging of ccRCC. The combined model of MEI + IMDI achieved favorable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助噗噗xie采纳,获得10
刚刚
云起龙都发布了新的文献求助10
1秒前
lixiang完成签到 ,获得积分10
5秒前
CAOHOU应助研友_P85MX8采纳,获得10
5秒前
5秒前
6秒前
小脚丫完成签到,获得积分10
6秒前
Yoki发布了新的文献求助10
7秒前
7秒前
111完成签到,获得积分10
7秒前
7秒前
纳米酶催化完成签到,获得积分10
7秒前
7秒前
风华正茂完成签到,获得积分10
8秒前
Azure发布了新的文献求助10
10秒前
蔷薇果完成签到 ,获得积分10
10秒前
大观天下发布了新的文献求助10
10秒前
柯一一应助xqxqxqxqxqx采纳,获得10
11秒前
舒伯特完成签到 ,获得积分10
12秒前
12秒前
小新发布了新的文献求助10
13秒前
14秒前
14秒前
yin发布了新的文献求助10
15秒前
17秒前
小逊发布了新的文献求助10
18秒前
在水一方应助幽默艳采纳,获得10
18秒前
ddd发布了新的文献求助10
18秒前
coolkid应助勤劳思卉采纳,获得10
19秒前
协和_子鱼发布了新的文献求助10
20秒前
司空豁应助小智采纳,获得10
21秒前
22秒前
大个应助小逊采纳,获得10
23秒前
XiaoShu完成签到,获得积分10
23秒前
落后以旋发布了新的文献求助10
24秒前
24秒前
华仔应助称心乐枫采纳,获得10
25秒前
27秒前
28秒前
coolkid应助小花花采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Theories of Human Development 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919149
求助须知:如何正确求助?哪些是违规求助? 3464352
关于积分的说明 10932349
捐赠科研通 3192393
什么是DOI,文献DOI怎么找? 1764160
邀请新用户注册赠送积分活动 854681
科研通“疑难数据库(出版商)”最低求助积分说明 794412