Soft modularized robotic arm for safe human–robot interaction based on visual and proprioceptive feedback

执行机构 惯性测量装置 人工智能 机器人 稳健性(进化) 计算机视觉 计算机科学 机械臂 方向(向量空间) 工程类 控制工程 几何学 数学 生物化学 基因 化学
作者
Subyeong Ku,Byung-Hyun Song,T.H. Park,Young‐Hoon Lee,Yong‐Lae Park
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:43 (8): 1128-1150 被引量:7
标识
DOI:10.1177/02783649241227249
摘要

This study proposes a modularized soft robotic arm with integrated sensing of human touches for physical human–robot interactions. The proposed robotic arm is constructed by connecting multiple soft manipulator modules, each of which consists of three bellow-type soft actuators, pneumatic valves, and an on-board sensing and control circuit. By employing stereolithography three-dimensional (3D) printing technique, the bellow actuator is capable of incorporating embedded organogel channels in the thin wall of its body that are used for detecting human touches. The organogel thus serves as a soft interface for recognizing the intentions of the human operators, enabling the robot to interact with them while generating desired motions of the manipulator. In addition to the touch sensors, each manipulator module has compact, soft string sensors for detecting the displacements of the bellow actuators. When combined with an inertial measurement unit (IMU), the manipulator module has a capability of estimating its own pose or orientation internally. We also propose a localization method that allows us to estimate the location of the manipulator module and to acquire the 3D information of the target point in an uncontrolled environment. The proposed method uses only a single depth camera combined with a deep learning model and is thus much simpler than those of conventional motion capture systems that usually require multiple cameras in a controlled environment. Using the feedback information from the internal sensors and camera, we implemented closed-loop control algorithms to carry out tasks of reaching and grasping objects. The manipulator module shows structural robustness and the performance reliability over 5,000 cycles of repeated actuation. It shows a steady-state error and a standard deviation of 0.8 mm and 0.3 mm, respectively, using the proposed localization method and the string sensor data. We demonstrate an application example of human–robot interaction that uses human touches as triggers to pick up and manipulate target objects. The proposed soft robotic arm can be easily installed in a variety of human workspaces, since it has the ability to interact safely with humans, eliminating the need for strict control of the environments for visual perception. We believe that the proposed system has the potential to integrate soft robots into our daily lives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangshumin发布了新的文献求助10
1秒前
澜生完成签到,获得积分10
1秒前
ycccccc完成签到 ,获得积分10
4秒前
jayla发布了新的文献求助30
4秒前
心落失完成签到,获得积分10
4秒前
木木发布了新的文献求助10
6秒前
6秒前
失望完成签到,获得积分20
7秒前
10秒前
彭于晏应助惠绝山采纳,获得10
11秒前
李爱国应助lixinlong采纳,获得10
12秒前
12秒前
开心的花卷完成签到,获得积分10
12秒前
科目三应助Rita采纳,获得10
12秒前
灵巧汉堡完成签到 ,获得积分10
14秒前
tianmeiling完成签到 ,获得积分10
14秒前
忧伤的慕梅完成签到 ,获得积分10
15秒前
11发布了新的文献求助10
15秒前
17秒前
科研通AI5应助闪闪灵雁采纳,获得10
18秒前
心木完成签到 ,获得积分10
18秒前
19秒前
19秒前
马里奥女士完成签到 ,获得积分10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
核桃应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得30
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
菠菜发布了新的文献求助100
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
xzy998应助科研通管家采纳,获得10
20秒前
可爱的函函应助小鱼采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
小小兔发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
25秒前
星辰大海应助Nicole采纳,获得10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866264
求助须知:如何正确求助?哪些是违规求助? 3408824
关于积分的说明 10660041
捐赠科研通 3132964
什么是DOI,文献DOI怎么找? 1727878
邀请新用户注册赠送积分活动 832501
科研通“疑难数据库(出版商)”最低求助积分说明 780316