A Transformer-Based Gesture Prediction Model via sEMG Sensor for Human–Robot Interaction

变压器 手势 机器人 计算机科学 人机交互 人工智能 手势识别 隐马尔可夫模型 计算机视觉 工程类 语音识别 电压 电气工程
作者
Yanhong Liu,Xingyu Li,Lei Yang,Hongnian Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:6
标识
DOI:10.1109/tim.2024.3373045
摘要

As one of the most direct and pivotal modes of human-computer interaction (HCI), the application of surface electromyography (sEMG) signals in the domain of gesture prediction has emerged as a prominent area of research. To enhance the performance of gesture prediction system based on multi-channel sEMG signals, a novel gesture prediction framework is proposed that (i) Conversion of original biological signals from multi-channel sEMG into two-dimensional time-frequency maps is achieved through the incorporation of continuous wavelet transform (CWT). (ii) For two-dimensional time-frequency map inputs, a Transformer-based classification network that effectively learns local and global context information is proposed, named DIFT-Net, with the goal of implementing sEMG-based gesture prediction for robot interaction. Proposed DIFT-Net employs a dual-branch interactive fusion structure based on the Swin Transformer, enabling effective acquisition of global contextual information and local details. Additionally, an attention guidance module (AGM) and an attentional interaction module (AIM) are proposed to guide network feature extraction and fusion processes in proposed DIFT-Net. The AGM module takes intermediate features from the same stage of both branches as input and guides the network to extract more localized and detailed features through convolutional attention. Meanwhile, the AIM module integrates output features from both branches to enhance the aggregation of global context information across various scales. To substantiate the efficacy of DIFT-Net, a multi-channel EMG bracelet is utilized to collect and construct an sEMG signal dataset. Experimental results demonstrate that the proposed DIFT-Net attains an accuracy of 98.36% in self-built dataset and 82.64% accuracy on the public Nanapro DB1 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分10
1秒前
小杰完成签到,获得积分10
2秒前
3秒前
上官若男应助BUG采纳,获得10
4秒前
4秒前
4秒前
cheng发布了新的文献求助10
4秒前
CYANjane应助顺利白桃采纳,获得10
6秒前
min发布了新的文献求助10
7秒前
Felix发布了新的文献求助10
8秒前
kelakola完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
JTHan完成签到,获得积分20
10秒前
11秒前
深情安青应助HIT_C采纳,获得10
11秒前
13秒前
14秒前
那日迈发布了新的文献求助10
15秒前
充电宝应助小袁采纳,获得10
15秒前
单纯雨琴应助科研小白采纳,获得10
16秒前
16秒前
kx完成签到,获得积分10
16秒前
17秒前
min完成签到,获得积分10
19秒前
66m37发布了新的文献求助10
20秒前
21秒前
加减乘除发布了新的文献求助10
21秒前
21秒前
JinY完成签到,获得积分10
21秒前
金蛋蛋完成签到 ,获得积分10
22秒前
机智宛秋完成签到,获得积分10
23秒前
tectextey发布了新的文献求助10
24秒前
满意诗霜完成签到,获得积分10
24秒前
26秒前
萝卜炖土豆完成签到,获得积分10
26秒前
大兵种花关注了科研通微信公众号
28秒前
28秒前
28秒前
待放光的吖啶酯完成签到,获得积分10
30秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874418
求助须知:如何正确求助?哪些是违规求助? 3416666
关于积分的说明 10700222
捐赠科研通 3140884
什么是DOI,文献DOI怎么找? 1733033
邀请新用户注册赠送积分活动 835723
科研通“疑难数据库(出版商)”最低求助积分说明 782177