Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution

收缩率 计算机科学 人工智能 图像(数学) 计算机视觉 机器学习
作者
Jiamian Wang,Huan Wang,Yulun Zhang,Yun Fu,Zhiqiang Tao
标识
DOI:10.1109/iccv51070.2023.01157
摘要

Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures. However, prevailing SR models suffer from prohibitive memory footprint and intensive computations, which limits further deployment on edge devices. This work investigates the potential of network pruning for super-resolution to take advantage of off-the-shelf network designs and reduce the underlying computational overhead. Two main challenges remain in applying pruning methods for SR. First, the widely-used filter pruning technique reflects limited granularity and restricted adaptability to diverse network structures. Second, existing pruning methods generally operate upon a pre-trained network for the sparse structure determination, hard to get rid of dense model training in the traditional SR paradigm. To address these challenges, we adopt unstructured pruning with sparse models directly trained from scratch. Specifically, we propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly initialized network at each iteration and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly. We observe that the proposed ISS-P can dynamically learn sparse structures adapting to the optimization process and preserve the sparse model's trainability by yielding a more regularized gradient throughput. Experiments on benchmark datasets demonstrate the effectiveness of the proposed ISS-P over diverse network architectures. Code is available at https://github.com/Jiamian-Wang/Iterative-Soft-Shrinkage-SR
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庾傀斗发布了新的文献求助10
刚刚
DTkunkun发布了新的文献求助10
2秒前
汤成莉完成签到 ,获得积分10
2秒前
战场螃蟹完成签到,获得积分10
3秒前
东耦应助iwww采纳,获得10
5秒前
梁帅琦完成签到,获得积分20
7秒前
突突兔完成签到 ,获得积分10
7秒前
8秒前
9秒前
lzd完成签到,获得积分10
10秒前
CodeCraft应助graham1101采纳,获得10
10秒前
ZX0501完成签到,获得积分10
11秒前
hi发布了新的文献求助10
12秒前
苒苒完成签到,获得积分10
14秒前
yimi发布了新的文献求助10
14秒前
apple_chan发布了新的文献求助10
15秒前
solarlad完成签到,获得积分10
15秒前
15秒前
16秒前
Mirandavia发布了新的文献求助20
19秒前
思源应助美丽的雪珍采纳,获得10
20秒前
21秒前
21秒前
charry发布了新的文献求助10
23秒前
25秒前
丘比特应助Ronee采纳,获得10
25秒前
25秒前
28秒前
nick完成签到,获得积分10
29秒前
闪闪的白易完成签到,获得积分10
29秒前
gu123完成签到,获得积分10
29秒前
Orange应助猪猪hero采纳,获得10
30秒前
CipherSage应助sunyanghu369采纳,获得10
30秒前
不会失忆完成签到,获得积分10
30秒前
31秒前
graham1101发布了新的文献求助10
32秒前
33秒前
飘逸小懒猪完成签到,获得积分10
33秒前
Lucas应助爱吃香菜采纳,获得10
35秒前
35秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056219
求助须知:如何正确求助?哪些是违规求助? 3594312
关于积分的说明 11419936
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825593
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971