Prediction models for postoperative delirium in elderly patients with machine-learning algorithms and SHapley Additive exPlanations

逻辑回归 机器学习 接收机工作特性 算法 列线图 医学 随机森林 支持向量机 人工智能 髋部骨折 内科学 计算机科学 骨质疏松症
作者
Yuxiang Song,Di Zhang,Qian Wang,Yuqing Liu,Kunsha Chen,Jingjia Sun,Likai Shi,Baowei Li,Xiaodong Yang,Weidong Mi,Jiangbei Cao
出处
期刊:Translational Psychiatry [Springer Nature]
卷期号:14 (1): 57-57 被引量:31
标识
DOI:10.1038/s41398-024-02762-w
摘要

Abstract Postoperative delirium (POD) is a common and severe complication in elderly patients with hip fractures. Identifying high-risk patients with POD can help improve the outcome of patients with hip fractures. We conducted a retrospective study on elderly patients (≥65 years of age) who underwent orthopedic surgery with hip fracture between January 2014 and August 2019. Conventional logistic regression and five machine-learning algorithms were used to construct prediction models of POD. A nomogram for POD prediction was built with the logistic regression method. The area under the receiver operating characteristic curve (AUC-ROC), accuracy, sensitivity, and precision were calculated to evaluate different models. Feature importance of individuals was interpreted using Shapley Additive Explanations (SHAP). About 797 patients were enrolled in the study, with the incidence of POD at 9.28% (74/797). The age, renal insufficiency, chronic obstructive pulmonary disease (COPD), use of antipsychotics, lactate dehydrogenase (LDH), and C-reactive protein are used to build a nomogram for POD with an AUC of 0.71. The AUCs of five machine-learning models are 0.81 (Random Forest), 0.80 (GBM), 0.68 (AdaBoost), 0.77 (XGBoost), and 0.70 (SVM). The sensitivities of the six models range from 68.8% (logistic regression and SVM) to 91.9% (Random Forest). The precisions of the six machine-learning models range from 18.3% (logistic regression) to 67.8% (SVM). Six prediction models of POD in patients with hip fractures were constructed using logistic regression and five machine-learning algorithms. The application of machine-learning algorithms could provide convenient POD risk stratification to benefit elderly hip fracture patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十二夜的三冬四夏完成签到,获得积分10
1秒前
1秒前
2秒前
哈吉米完成签到,获得积分10
2秒前
2秒前
zhangjian发布了新的文献求助10
2秒前
momo完成签到,获得积分10
2秒前
柚木完成签到,获得积分10
2秒前
qiaoj2006发布了新的文献求助10
3秒前
春意也曾执着于秋完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
陈皮糖不酸完成签到,获得积分10
4秒前
4秒前
4秒前
poegtam完成签到,获得积分10
4秒前
宁1发布了新的文献求助10
5秒前
能干水杯发布了新的文献求助10
5秒前
yu发布了新的文献求助10
6秒前
紧张的书文完成签到 ,获得积分10
6秒前
pishuang发布了新的文献求助10
6秒前
6秒前
顾磊磊发布了新的文献求助10
6秒前
wanci应助无辜的姒采纳,获得10
6秒前
琉尔完成签到,获得积分20
6秒前
6秒前
你好发布了新的文献求助40
7秒前
拥挤而独行完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
zer0完成签到,获得积分10
8秒前
bellis发布了新的文献求助10
8秒前
8秒前
8秒前
无奈青旋完成签到 ,获得积分10
9秒前
9秒前
9秒前
小摩尔发布了新的文献求助10
9秒前
小小发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483474
求助须知:如何正确求助?哪些是违规求助? 4584186
关于积分的说明 14395271
捐赠科研通 4513881
什么是DOI,文献DOI怎么找? 2473685
邀请新用户注册赠送积分活动 1459720
关于科研通互助平台的介绍 1433126