Incipient fault detection based on ensemble learning and distribution dissimilarity analysis in multi-feature processes

计算机科学 加权 故障检测与隔离 滑动窗口协议 过程(计算) 数据挖掘 特征(语言学) 集成学习 人工智能 模式识别(心理学) 断层(地质) 探测器 机器学习 窗口(计算) 放射科 医学 电信 语言学 哲学 地震学 执行机构 地质学 操作系统
作者
Meizhi Liu,Xiangyu Kong,Jiayu Luo,Lei Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 045905-045905 被引量:2
标识
DOI:10.1088/1361-6501/ad1ba2
摘要

Abstract Timely and accurate detection of incipient faults has attracted considerable attention and research interest in recent years, due to its potential for the prevention of serious safety incidents and for supporting preventive maintenance. However, most existing methods use single detection model, neglecting the coexistence of multiple features and the local data distribution information found in industrial scenes. To overcome this problem, an incipient fault detection method named multiple model ensemble and distribution dissimilarity analysis (MME-DISSIM) is proposed. First, various multivariate statistical analysis methods are employed as basic detectors to comprehensively capture the feature information hidden in the process data. Second, DISSIM analysis is performed to evaluate the dissimilarity between the current sliding window and each training subset. This evaluation allows for the calculation of weighting factors for each basic detector, which helps to preserve the local distribution information of the current sliding window. Third, ensemble learning is utilized to integrate the statistics from all basic detectors into two detection indices to determine the operation status of the system. In addition, two measurement metrics are defined to quantitatively analyze the fault level of incipient faults. Finally, several experiments on a numerical case, Tennessee Eastman process, and actual PROcess NeTwork Optimization are presented to verify the efficacy and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愤怒的稀发布了新的文献求助10
1秒前
清爽秋白发布了新的文献求助10
1秒前
毕加索求索完成签到,获得积分10
2秒前
陈老派发布了新的文献求助10
2秒前
小柠檬发布了新的文献求助10
2秒前
jw完成签到,获得积分10
2秒前
pjmwj发布了新的文献求助30
3秒前
曾经的电脑完成签到 ,获得积分10
3秒前
YUKI完成签到,获得积分10
4秒前
Kvolu29发布了新的文献求助10
4秒前
高挑的外绣完成签到,获得积分10
4秒前
EVE发布了新的文献求助10
4秒前
yyyyyy发布了新的文献求助10
5秒前
科研通AI5应助逸寒采纳,获得10
5秒前
5秒前
眼睛大的芷珊完成签到 ,获得积分10
5秒前
6秒前
长生完成签到,获得积分10
6秒前
852应助Rico采纳,获得10
6秒前
烟花应助泡泡采纳,获得10
7秒前
在水一方应助毕加索求索采纳,获得10
7秒前
heiye完成签到,获得积分10
7秒前
7秒前
7秒前
坚定的白薇完成签到,获得积分10
8秒前
8秒前
元气蛋完成签到,获得积分10
9秒前
付知夏完成签到 ,获得积分10
9秒前
10秒前
EVE完成签到,获得积分10
10秒前
zxb发布了新的文献求助10
11秒前
11秒前
成就的幻竹完成签到,获得积分10
11秒前
杨小黑完成签到,获得积分10
12秒前
一一应助xiaowuyao采纳,获得10
12秒前
geraltgg发布了新的文献求助10
12秒前
Rico完成签到,获得积分10
13秒前
14秒前
terry完成签到,获得积分10
14秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838855
求助须知:如何正确求助?哪些是违规求助? 3381275
关于积分的说明 10517605
捐赠科研通 3100746
什么是DOI,文献DOI怎么找? 1707746
邀请新用户注册赠送积分活动 821892
科研通“疑难数据库(出版商)”最低求助积分说明 773033