Thermal runaway evolution of a 280 Ah lithium-ion battery with LiFePO4 as the cathode for different heat transfer modes constructed by mechanical abuse

热失控 材料科学 阴极 离子 锂(药物) 电池(电) 锂离子电池 热的 传热 复合材料 法律工程学 热力学 化学 电气工程 心理学 物理 工程类 精神科 功率(物理) 有机化学
作者
Zhixiang Cheng,Chengdong Wang,Wenxin Mei,Peng Qin,Junyuan Li,Qingsong Wang
出处
期刊:Journal of Energy Chemistry [Elsevier]
标识
DOI:10.1016/j.jechem.2024.01.073
摘要

Lithium iron phosphate batteries have been increasingly utilized in recent years because their higher safety performance can improve the increasing trend of recurring thermal runaway accidents. However, the safety performance and mechanism of high-capacity lithium iron phosphate batteries under internal short-circuit challenges remain to be explored. This work analyzes the thermal runaway evolution of high-capacity LiFePO4 batteries under different internal heat transfer modes, which are controlled by different penetration modes. Two penetration cases involving complete penetration and incomplete penetration were detected during the test, and two modes were performed incorporating nails that either remained or were removed after penetration to comprehensively reveal the thermal runaway mechanism. A theoretical model of microcircuits and internal heat conduction is also established. The results indicated three thermal runaway evolution processes for high-capacity batteries, which corresponded to the experimental results of thermal equilibrium, single thermal runaway, and two thermal runaway events. The difference in heat distribution in the three phenomena is determined based on the microstructure and material structure near the pinhole. By controlling the heat dissipation conditions, the time interval between two thermal runaway events can be delayed from 558 to 1417 s, accompanied by a decrease in the concentration of in-situ gas production during the second thermal runaway event.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研废物完成签到,获得积分10
刚刚
球啊球发布了新的文献求助10
1秒前
若水应助啊刮痧采纳,获得10
1秒前
1秒前
宜醉宜游宜睡应助雨忠采纳,获得10
1秒前
1秒前
2秒前
fpan完成签到,获得积分10
2秒前
shenyanlei完成签到,获得积分10
2秒前
痞子毛应助Jim采纳,获得10
2秒前
3秒前
小伊001完成签到 ,获得积分10
3秒前
自由的凡白关注了科研通微信公众号
4秒前
4秒前
4秒前
5秒前
科研通AI2S应助阿海采纳,获得10
5秒前
路内里发布了新的文献求助10
5秒前
5秒前
6秒前
hux完成签到,获得积分10
6秒前
prof.zhang发布了新的文献求助10
8秒前
李佳会发布了新的文献求助10
8秒前
科研一霸完成签到 ,获得积分10
9秒前
李爱国应助ximitona采纳,获得10
10秒前
10秒前
myf完成签到 ,获得积分10
10秒前
慧19960418发布了新的文献求助10
11秒前
12秒前
路内里完成签到,获得积分20
12秒前
心字烧香发布了新的文献求助30
13秒前
weili完成签到,获得积分10
14秒前
天天快乐应助xopla采纳,获得10
14秒前
14秒前
14秒前
14秒前
绮山发布了新的文献求助10
14秒前
14秒前
Ava应助祝振振采纳,获得10
14秒前
不知道取啥名完成签到,获得积分10
15秒前
高分求助中
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
少脉山油柑叶的化学成分研究 350
微化工技术 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2442036
求助须知:如何正确求助?哪些是违规求助? 2119584
关于积分的说明 5385037
捐赠科研通 1847736
什么是DOI,文献DOI怎么找? 919359
版权声明 562008
科研通“疑难数据库(出版商)”最低求助积分说明 491758