Multi-stream Bi-GRU network to extract a comprehensive feature set for ECG signal classification

计算机科学 特征(语言学) 特征提取 卷积神经网络 模式识别(心理学) 随机森林 人工智能 深度学习 哲学 语言学
作者
Allam Jaya Prakash,Suraj Prakash Sahoo,Samit Ari
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:92: 106097-106097 被引量:7
标识
DOI:10.1016/j.bspc.2024.106097
摘要

Electrocardiogram (ECG) signal analysis plays a crucial role in diagnosing and monitoring various cardiac diseases. Automatic ECG beat classification is necessary to analyze long-term ECG recordings. The major limitations of the traditional automatic ECG beat classification approaches are the constraints of hand-crafted feature extraction, the requirement of an extensive training dataset, dealing with the ECG signal as an image, and poor performance in detecting supraventricular ectopic and ventricular (S and V) beats. To overcome the above-mentioned difficulties, a novel approach to ECG signal classification based on deep feature extraction with minimum complexity along with random forest is proposed in this work. Three different individual blocks are designed with convolutional neural networks (CNN), residuals, and bi-directional gated recurrent units (Bi-GRU) to extract distributed representative, hierarchical & condensed, and long-term dependency features. These extracted features are used to form deep features with the help of concatenation and fusion techniques. The resulting features are able to capture both the morphology and temporal dynamics of the ECG signal. These features are more effective in identifying different types of arrhythmias, predicting future cardiac events, and filtering out noise and artifacts. The unique nature of the features obtained by combining CNN, residual blocks, and Bi-GRU enables a more comprehensive and accurate analysis of the ECG signal, which is particularly important for diagnosing and monitoring cardiac abnormalities. Finally, the extracted deep feature set is utilized to train and test the random forest algorithm. The proposed approach was evaluated on three publicly available datasets and achieved better performance with an overall accuracy of more than 98.00%. Our approach outperforms existing literature by providing a more accurate classification of ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuqian发布了新的文献求助10
1秒前
5秒前
5秒前
华生发布了新的文献求助10
5秒前
6秒前
111发布了新的文献求助10
7秒前
愉快树叶完成签到,获得积分10
9秒前
罗舒发布了新的文献求助10
9秒前
善学以致用应助GrandeAmore采纳,获得10
9秒前
元狩完成签到 ,获得积分10
9秒前
snowy_owl发布了新的文献求助10
9秒前
10秒前
10秒前
函花花发布了新的文献求助10
10秒前
Allen发布了新的文献求助10
11秒前
11秒前
调皮的吐司完成签到,获得积分10
12秒前
科研通AI5应助wsnssbnhbx1采纳,获得10
12秒前
无花果应助zhuqian采纳,获得10
13秒前
Niki完成签到,获得积分10
15秒前
Wt发布了新的文献求助10
15秒前
科研通AI2S应助Doyne采纳,获得10
16秒前
yjj6809发布了新的文献求助10
16秒前
16秒前
21秒前
21秒前
传统的雨文完成签到,获得积分10
22秒前
阎2333完成签到,获得积分20
23秒前
111发布了新的文献求助30
23秒前
小二郎应助nunu采纳,获得10
24秒前
25秒前
Myx发布了新的文献求助10
26秒前
zz完成签到,获得积分10
26秒前
阎2333发布了新的文献求助10
26秒前
郭郭要努力ya完成签到 ,获得积分10
28秒前
VDC应助完美芹采纳,获得30
28秒前
览明月完成签到 ,获得积分10
28秒前
31秒前
顾矜应助夏雨微凉采纳,获得10
32秒前
wsnssbnhbx1发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793299
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288400
捐赠科研通 3054639
什么是DOI,文献DOI怎么找? 1676091
邀请新用户注册赠送积分活动 804095
科研通“疑难数据库(出版商)”最低求助积分说明 761752