Generative Design of Statistically Self-Similar Mechanical Structures

沃罗诺图 计算机科学 点(几何) 分形 相似性(几何) 算法 领域(数学分析) 生成语法 理论计算机科学 数学 人工智能 几何学 图像(数学) 数学分析
作者
N. Jeremy Hill,Matthew Ebert,Milgram Maurice,Vinayak R. Krishnamurthy
标识
DOI:10.1115/detc2023-117063
摘要

Abstract We present a novel methodology to generate mechanical structures based on the idea of fractal geometry as described by the chaos game. Chaos game is an iterative method that generates self-similar point-sets in the limiting case within a polygonal domain. By computing Voronoi tessellations on these point-sets, our method generates mechanical structures that adopts the self-similarity of the point-sets resulting in fractal distribution of local stiffness. The motivation behind our approach comes from the observation that a typical generative structural design workflow requires the ability to generate families of structures that possess shared behavioral (e.g. thermal, mechanical, etc.) characteristics making each structure distinct but feasible. However, the generation of the alternatives, almost always, requires solving an inverse structural problem which is both conceptually and computationally challenging. The objective of our work is to develop and investigate a forward-design methodology for generating families of structures that, while not identical, exhibit similar mechanical behavior in a statistical sense. To this end, the central hypothesis of our work is that structures generated using the chaos game can generate families of self-similar structures that, while not identical, exhibit similar mechanical behavior in a statistical sense. Furthermore, each family is uniquely identifiable from the parameters of the chaos game, namely, the polygonal domain, fractional distance, and number of samples. We present a systematic study of these self-similar structures through modal analysis and demonstrate a preliminary confirmation of our hypothesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LCM666完成签到,获得积分10
刚刚
HHHSean发布了新的文献求助10
1秒前
1秒前
Lan完成签到 ,获得积分10
1秒前
2秒前
科研通AI5应助郑可馨采纳,获得10
3秒前
3秒前
YUQ发布了新的文献求助10
3秒前
迎南发布了新的文献求助10
4秒前
Metbutterly发布了新的文献求助10
4秒前
Evooolet发布了新的文献求助10
5秒前
6秒前
兮兮发布了新的文献求助10
7秒前
HHHSean完成签到,获得积分10
8秒前
草莓发布了新的文献求助30
8秒前
研友_Zr2mxZ完成签到,获得积分10
12秒前
科研通AI5应助Evooolet采纳,获得10
13秒前
Jimmy_King发布了新的文献求助10
13秒前
超级水壶发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
17秒前
18秒前
五虎发布了新的文献求助10
19秒前
从容发布了新的文献求助10
19秒前
香蕉觅云应助Lin2019采纳,获得10
21秒前
藤藤菜发布了新的文献求助10
22秒前
Mumu发布了新的文献求助10
23秒前
隐形曼青应助姜小麦采纳,获得10
24秒前
听白完成签到,获得积分10
25秒前
28秒前
传奇3应助gao采纳,获得10
29秒前
科研通AI5应助苗条的成仁采纳,获得10
29秒前
草莓完成签到,获得积分10
30秒前
知白完成签到,获得积分10
32秒前
脑洞疼应助徐梦曦采纳,获得10
32秒前
32秒前
顾矜应助调皮帆布鞋采纳,获得10
32秒前
32秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844174
求助须知:如何正确求助?哪些是违规求助? 3386613
关于积分的说明 10545871
捐赠科研通 3107287
什么是DOI,文献DOI怎么找? 1711577
邀请新用户注册赠送积分活动 824131
科研通“疑难数据库(出版商)”最低求助积分说明 774493