Deep Interpretable Fully CNN Structure for Sparse Hyperspectral Unmixing via Model-Driven and Data-Driven Integration

高光谱成像 计算机科学 人工智能 深度学习 卷积神经网络 像素 模式识别(心理学) 算法
作者
Fanqiang Kong,Mengyue Chen,Yunsong Li,Dan Li,Yuhan Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:10
标识
DOI:10.1109/tgrs.2023.3324018
摘要

Hyperspectral unmixing (HSU), which aims to identify constituent materials and estimate the corresponding proportions in a scene, is an essential research topic in remote sensing. Most deep learning-based methods are data-inspired, relying on massive amounts of data to train black-box-like networks. While a few model-inspired unmixing networks only consider the spectral features of the pixel, ignoring the exploration of spatial information between pixels. In this paper, we design a network topology according to the classical iterative algorithm, and the large number of learnable parameters contained in the network are continuously updated through data fitting. In other words, we integrate the concepts of both model-driven and data-driven and propose a deep interpretable fully convolutional neural network (DIFCNN). The iteration of the classic sparse unmixing algorithm is unfolded to provide guidance for the network structure and incorporate prior knowledge into the network. Meanwhile, two-dimensional (2D) convolutional layers are employed to automatically learn the spatial information at different scales. A known spectral library is used as a prior to initialize network parameters and reconstruct the image. The DIFCNN adopts an end-to-end training strategy, in addition, we establish a new loss function that adds a joint sparse constraint on the abundance result to the cross-entropy loss. Experiments on both synthetic and real datasets show that the performance of the DIFCNN not only outperforms the SUnSAL and its improved algorithms, but also is highly competitive in the state-of-the-art methods of deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快竺完成签到 ,获得积分10
2秒前
种一棵树应助南风不竞采纳,获得10
2秒前
2秒前
3秒前
浮游应助sunrase采纳,获得10
3秒前
小马甲应助动听钧采纳,获得10
3秒前
4秒前
情怀应助烦烦烦采纳,获得10
5秒前
你已成风发布了新的文献求助10
6秒前
7秒前
7秒前
向北完成签到,获得积分10
8秒前
10秒前
11秒前
hsh发布了新的文献求助10
12秒前
12秒前
Dean应助卡奴采纳,获得50
12秒前
12秒前
酷炫师发布了新的文献求助10
14秒前
14秒前
fionazhangdr完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
高高不二发布了新的文献求助10
16秒前
wuyu发布了新的文献求助10
16秒前
咎淇完成签到,获得积分10
18秒前
淡如水发布了新的文献求助10
18秒前
19秒前
19秒前
天天完成签到,获得积分0
20秒前
sunrase完成签到,获得积分10
20秒前
花无双完成签到,获得积分0
21秒前
muli发布了新的文献求助10
22秒前
丫丫完成签到 ,获得积分10
22秒前
23秒前
CodeCraft应助啦啦啦啦啦啦采纳,获得10
24秒前
秋的账号完成签到 ,获得积分10
29秒前
29秒前
敏感野狼完成签到,获得积分20
29秒前
RJ完成签到,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638869
求助须知:如何正确求助?哪些是违规求助? 4746433
关于积分的说明 15003984
捐赠科研通 4796811
什么是DOI,文献DOI怎么找? 2563021
邀请新用户注册赠送积分活动 1522222
关于科研通互助平台的介绍 1481993