已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Origin identification of Poria cocos based on hyperspectral imaging technology].

高光谱成像 混淆矩阵 线性判别分析 模式识别(心理学) 数学 人工智能 支持向量机 计算机科学
作者
Xue Sun,Deng-Ting Zhang,Hui Wang,Cong Zhou,Jian Yang,Daiyin Peng,Xiaobo Zhang
出处
期刊:PubMed 卷期号:48 (16): 4337-4346 被引量:4
标识
DOI:10.19540/j.cnki.cjcmm.20230512.102
摘要

To realize the non-destructive and rapid origin discrimination of Poria cocos in batches, this study established the P. cocos origin recognition model based on hyperspectral imaging combined with machine learning. P. cocos samples from Anhui, Fujian, Guangxi, Hubei, Hunan, Henan and Yunnan were used as the research objects. Hyperspectral data were collected in the visible and near infrared band(V-band, 410-990 nm) and shortwave infrared band(S-band, 950-2 500 nm). The original spectral data were divided into S-band, V-band and full-band. With the original data(RD) of different bands, multiplicative scatter correction(MSC), standard normal variation(SNV), S-G smoothing(SGS), first derivative(FD), second derivative(SD) and other pretreatments were carried out. Then the data were classified according to three different types of producing areas: province, county and batch. The origin identification model was established by partial least squares discriminant analysis(PLS-DA) and linear support vector machine(LinearSVC). Finally, confusion matrix was employed to evaluate the optimal model, with F1 score as the evaluation standard. The results revealed that the origin identification model established by FD combined with LinearSVC had the highest prediction accuracy in full-band range classified by province, V-band range by county and full-band range by batch, which were 99.28%, 98.55% and 97.45%, respectively, and the overall F1 scores of these three models were 99.16%, 98.59% and 97.58%, respectively, indicating excellent performance of these models. Therefore, hyperspectral imaging combined with LinearSVC can realize the non-destructive, accurate and rapid identification of P. cocos from different producing areas in batches, which is conducive to the directional research and production of P. cocos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮夏兰发布了新的文献求助10
刚刚
欢呼宛秋完成签到,获得积分10
4秒前
5秒前
人双山几文完成签到 ,获得积分10
5秒前
欣慰外套完成签到 ,获得积分10
8秒前
ooon完成签到 ,获得积分10
11秒前
神秘猎牛人完成签到,获得积分10
13秒前
江南之南完成签到 ,获得积分10
13秒前
南汐完成签到,获得积分10
15秒前
王xingxing完成签到 ,获得积分10
17秒前
18秒前
葡紫明完成签到 ,获得积分10
19秒前
完美世界应助尤寄风采纳,获得10
19秒前
24秒前
26秒前
黑大侠完成签到 ,获得积分0
27秒前
王顺顺发布了新的文献求助10
28秒前
alvin完成签到 ,获得积分10
29秒前
123完成签到,获得积分10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
陈思完成签到,获得积分10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
归尘应助科研通管家采纳,获得10
37秒前
田様应助陈鸿业采纳,获得10
37秒前
归尘应助科研通管家采纳,获得10
37秒前
归尘应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
38秒前
40秒前
42秒前
breeze完成签到,获得积分20
43秒前
44秒前
44秒前
研友_ZGRvon发布了新的文献求助10
45秒前
Gfi发布了新的文献求助30
48秒前
赘婿应助魔幻的夜柳采纳,获得10
54秒前
54秒前
54秒前
琪琪发布了新的文献求助10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314