亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Origin identification of Poria cocos based on hyperspectral imaging technology].

高光谱成像 混淆矩阵 线性判别分析 模式识别(心理学) 数学 人工智能 支持向量机 计算机科学
作者
Xue Sun,Deng-Ting Zhang,Hui Wang,Cong Zhou,Jian Yang,Daiyin Peng,Xiaobo Zhang
出处
期刊:PubMed 卷期号:48 (16): 4337-4346 被引量:2
标识
DOI:10.19540/j.cnki.cjcmm.20230512.102
摘要

To realize the non-destructive and rapid origin discrimination of Poria cocos in batches, this study established the P. cocos origin recognition model based on hyperspectral imaging combined with machine learning. P. cocos samples from Anhui, Fujian, Guangxi, Hubei, Hunan, Henan and Yunnan were used as the research objects. Hyperspectral data were collected in the visible and near infrared band(V-band, 410-990 nm) and shortwave infrared band(S-band, 950-2 500 nm). The original spectral data were divided into S-band, V-band and full-band. With the original data(RD) of different bands, multiplicative scatter correction(MSC), standard normal variation(SNV), S-G smoothing(SGS), first derivative(FD), second derivative(SD) and other pretreatments were carried out. Then the data were classified according to three different types of producing areas: province, county and batch. The origin identification model was established by partial least squares discriminant analysis(PLS-DA) and linear support vector machine(LinearSVC). Finally, confusion matrix was employed to evaluate the optimal model, with F1 score as the evaluation standard. The results revealed that the origin identification model established by FD combined with LinearSVC had the highest prediction accuracy in full-band range classified by province, V-band range by county and full-band range by batch, which were 99.28%, 98.55% and 97.45%, respectively, and the overall F1 scores of these three models were 99.16%, 98.59% and 97.58%, respectively, indicating excellent performance of these models. Therefore, hyperspectral imaging combined with LinearSVC can realize the non-destructive, accurate and rapid identification of P. cocos from different producing areas in batches, which is conducive to the directional research and production of P. cocos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li应助科研通管家采纳,获得10
14秒前
bc应助科研通管家采纳,获得30
14秒前
bc应助科研通管家采纳,获得30
14秒前
Li应助科研通管家采纳,获得10
14秒前
Fischl完成签到 ,获得积分10
22秒前
自然幼翠完成签到,获得积分20
56秒前
自然幼翠发布了新的文献求助30
1分钟前
zm发布了新的文献求助10
1分钟前
Li应助科研通管家采纳,获得10
2分钟前
Li应助科研通管家采纳,获得10
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
bc应助科研通管家采纳,获得30
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
zm完成签到,获得积分10
2分钟前
3分钟前
getgetting发布了新的文献求助10
3分钟前
3分钟前
zzzjh发布了新的文献求助10
3分钟前
小吴发布了新的文献求助10
3分钟前
今后应助zzzjh采纳,获得10
3分钟前
3分钟前
zoey发布了新的文献求助10
3分钟前
搜集达人应助zoey采纳,获得10
4分钟前
Li应助科研通管家采纳,获得10
4分钟前
jyy应助科研通管家采纳,获得10
4分钟前
h0jian09完成签到,获得积分10
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
不胜玖完成签到 ,获得积分10
6分钟前
清秀灵薇完成签到,获得积分10
6分钟前
一只榴莲发布了新的文献求助10
7分钟前
7分钟前
搜集达人应助一只榴莲采纳,获得10
7分钟前
7分钟前
zzzjh发布了新的文献求助10
7分钟前
11发布了新的文献求助10
7分钟前
11完成签到,获得积分10
7分钟前
kkk完成签到 ,获得积分10
7分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329356
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714