Genghis Khan shark optimizer: A novel nature-inspired algorithm for engineering optimization

水准点(测量) 稳健性(进化) 元启发式 计算机科学 数学优化 优化算法 过程(计算) 算法 数学 大地测量学 生物化学 基因 操作系统 化学 地理
作者
Gang Hu,Yuxuan Guo,Guo Wei,Laith Abualigah
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:58: 102210-102210 被引量:167
标识
DOI:10.1016/j.aei.2023.102210
摘要

This study tenders a new nature-inspired metaheuristic algorithm (MA) based on the behavior of the Genghis Khan shark (GKS), called GKS optimizer (GKSO), which is used for numerical optimization and engineering design. The inspiration for GKSO comes from the predation and survival behavior of GKS, and the entire optimization process is achieved by simulating four different activities of GKS, including hunting (exploration), movement (exploitation), foraging (switch from exploration to exploitation), and self-protection mechanism. These operators are mimicked using various mathematical models to efficiently perform optimization tasks of agents in different regions of the search space. In an effort to validate this method's viability and superiority, an in-depth analysis of the proposed GKSO is carried out from both qualitative and quantitative perspectives. Qualitative analysis verifies that GKSO has good exploration and exploitation (ENE) capability. Simultaneously, GKSO is quantitatively analyzed with eight existing fish optimization algorithms and the other nine well-known MAs on CEC2019 and CEC2022, respectively. Among them, a series of experimental scenarios are conducted to validate the applicability and robustness of GKSO by exploring its performance for CEC2022 at different dimensions and maximum fitness evaluation quantity. Statistical results indicate that GKSO has a strong advantage in the competition between two different types of algorithms. Furthermore, five different kinds of real-world constrained optimization problems (OPs) in CEC2020 benchmark constrained optimization functions, including 50 engineering case suites, are selected to evaluate GKSO's performance and the other seven optimizers, further validating GKSO's extensive usefulness and validity in solving practical complex problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
yar应助aliu采纳,获得10
4秒前
heyuan1001完成签到,获得积分10
4秒前
复杂瑛完成签到,获得积分10
4秒前
chentong完成签到,获得积分10
6秒前
min发布了新的文献求助10
6秒前
kermitds完成签到 ,获得积分10
9秒前
9秒前
hyc发布了新的文献求助20
9秒前
9秒前
fzd完成签到,获得积分10
10秒前
传奇3应助迷失自我采纳,获得10
11秒前
JW完成签到,获得积分10
11秒前
12秒前
12秒前
wqb196发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助安详的夜山采纳,获得10
15秒前
Baron604应助wangyue采纳,获得10
15秒前
16秒前
Orange应助欧气青年采纳,获得10
16秒前
隐形曼青应助hyc采纳,获得10
18秒前
小刘同学发布了新的文献求助30
19秒前
guan发布了新的文献求助10
20秒前
科研通AI2S应助huayan采纳,获得10
22秒前
JamesPei应助大伟采纳,获得10
25秒前
25秒前
乐正如彤完成签到,获得积分10
27秒前
27秒前
A水暖五金批发张哥完成签到,获得积分10
27秒前
orange发布了新的文献求助10
30秒前
31秒前
32秒前
和谐的果汁完成签到 ,获得积分10
32秒前
35秒前
hyc发布了新的文献求助10
37秒前
000完成签到 ,获得积分10
39秒前
田様应助半分甜采纳,获得10
44秒前
hyc完成签到,获得积分10
45秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897099
求助须知:如何正确求助?哪些是违规求助? 3440957
关于积分的说明 10819342
捐赠科研通 3165919
什么是DOI,文献DOI怎么找? 1748988
邀请新用户注册赠送积分活动 845091
科研通“疑难数据库(出版商)”最低求助积分说明 788429