Brain-Inspired Remote Sensing Foundation Models and Open Problems: A Comprehensive Survey

计算机科学 基础(证据) 领域(数学) 代表(政治) 任务(项目管理) 开放式研究 数据科学 特征(语言学) 感知 特征学习 人工智能 人机交互 遥感 系统工程 工程类 万维网 哲学 考古 神经科学 法学 地质学 纯数学 历史 政治 生物 语言学 数学 政治学
作者
Licheng Jiao,Zhongjian Huang,Xiaoqiang Lu,Xu Liu,Yuting Yang,Jiaxuan Zhao,Jinyue Zhang,Biao Hou,Shuyuan Yang,Fang Liu,Wenping Ma,Lingling Li,Xiangrong Zhang,Puhua Chen,Zhixi Feng,Xu Tang,Yuwei Guo,Dou Quan,Shuang Wang,Weibin Li,Jing Bai,Yangyang Li,Ronghua Shang,Jie Feng
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 10084-10120 被引量:3
标识
DOI:10.1109/jstars.2023.3316302
摘要

The foundation model (FM) has garnered significant attention for its remarkable transfer performance in downstream tasks. Typically, it undergoes task-agnosticpre-training on a large dataset and can be efficiently adapted to various downstream applications through fine-tuning. While FMs have been extensively explored in language and other domains, their potential in remote sensing has also begun to attract scholarly interest. However, comprehensive investigations and performance comparisons of these models on remote sensing tasks are currently lacking. In this survey, we provide essential background knowledge by introducing key technologies and recent developments in FMs. Subsequently, we explore essential downstream applications in remote sensing, covering classification, localization, and understanding. Our analysis encompasses over thirty FMs in both natural and remote sensing fields, and we conduct extensive experiments on more than ten datasets, evaluating global feature representation, local feature representation, and target localization. Through quantitative assessments, we highlight the distinctions among various foundation models and confirm that pre-trained large-scale natural FMs can also deliver outstanding performance in remote sensing tasks. After that, we systematically presented a brain-inspired framework for remote sensing foundation models (RSFMs). We delve into the brain-inspired characteristics in this framework, including structure, perception, learning, and cognition. To conclude, we summarize twelve open problems in RSFMs, providing potential research directions. Our survey offers valuable insights into the burgeoning field of RSFMs and aims to foster further advancements in this exciting area
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助monan采纳,获得10
1秒前
科研通AI5应助烟花采纳,获得10
4秒前
6秒前
jiwenting发布了新的文献求助10
11秒前
安静苞络完成签到 ,获得积分10
12秒前
12秒前
14秒前
内向的紫萱完成签到,获得积分10
16秒前
悦耳初之完成签到,获得积分10
17秒前
充电宝应助李昕123采纳,获得10
17秒前
Owen应助oraen1采纳,获得10
20秒前
Distance发布了新的文献求助10
21秒前
希望天下0贩的0应助sun采纳,获得10
21秒前
凌风完成签到,获得积分10
24秒前
在水一方应助王SQ采纳,获得10
25秒前
pluto应助benlee采纳,获得50
28秒前
隐形曼青应助厚朴大师采纳,获得30
29秒前
29秒前
32秒前
33秒前
安安发布了新的文献求助10
36秒前
lizhiqian2024发布了新的文献求助10
38秒前
科研通AI5应助Nancy采纳,获得10
39秒前
斯文败类应助一方通行采纳,获得10
41秒前
半盏完成签到,获得积分10
43秒前
43秒前
steven发布了新的文献求助200
44秒前
lee完成签到,获得积分10
45秒前
脑洞疼应助zhuiyu采纳,获得10
46秒前
隐形曼青应助Jenny采纳,获得20
47秒前
48秒前
50秒前
眼睛大的从雪完成签到,获得积分10
50秒前
zhao驳回了大个应助
51秒前
53秒前
nana完成签到 ,获得积分10
53秒前
Nancy发布了新的文献求助10
53秒前
55秒前
无敌通发布了新的文献求助10
55秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327417
关于积分的说明 10231012
捐赠科研通 3042288
什么是DOI,文献DOI怎么找? 1669966
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804