A DCT-UNet-based framework for pulmonary airway segmentation integrating label self-updating and terminal region growing

分割 气道 计算机科学 树(集合论) 体素 模式识别(心理学) 慢性阻塞性肺病 终端(电信) 人工智能 医学 数学 外科 内科学 电信 数学分析
作者
Shuiqing Zhao,Yanan Wu,Jiaxuan Xu,Mengqi Li,Jie Feng,Shuyue Xia,Rongchang Chen,Zhenyu Liang,Wei Qian,Shouliang Qi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/adf486
摘要

Intrathoracic airway segmentation in computed tomography (CT) is important for quantitative and qualitative analysis of various chronic respiratory diseases and bronchial surgery navigation. However, the airway tree's morphological complexity, incomplete labels resulting from annotation difficulty, and intra-class imbalance between main and terminal airways limit the segmentation performance. Methods: Three methodological improvements are proposed to deal with the challenges. Firstly, we design a DCT-UNet to collect better information on neighbouring voxels and ones within a larger spatial region. Secondly, an airway label self-updating (ALSU) strategy is proposed to iteratively update the reference labels to conquer the problem of incomplete labels. Thirdly, a deep learning-based terminal region growing (TRG) is adopted to extract terminal airways. Extensive experiments were conducted on two internal datasets and three public datasets. Results: Compared to the counterparts, the proposed method can achieve a higher Branch Detected, Tree-length Detected, Branch Ratio, and Tree-length Ratio (ISICDM2021 dataset, 95.19%, 94.89%, 166.45%, and 172.29%; BAS dataset, 96.03%, 95.11%, 129.35%, and 137.00%). Ablation experiments show the effectiveness of three proposed solutions. Our method is applied to an in-house Chorionic Obstructive Pulmonary Disease (COPD) dataset. The measures of branch count, tree length, endpoint count, airway volume, and airway surface area are significantly different between COPD severity stages. Conclusions: The proposed methods can segment more terminal bronchi and larger length of airway, even some bronchi which are real but missed in the manual annotation can be detected. Potential application significance has been presented in characterizing COPD airway lesions and severity stages. .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
慕青应助archer01采纳,获得10
3秒前
4秒前
4秒前
5秒前
天真依玉完成签到,获得积分10
6秒前
高兴的小完成签到,获得积分10
7秒前
ZHANG_Kun发布了新的文献求助10
8秒前
neige发布了新的文献求助10
8秒前
迪鸣给迪鸣的求助进行了留言
9秒前
夏夏发布了新的文献求助10
9秒前
FOODHUA完成签到,获得积分10
12秒前
yeah完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
15秒前
乐乐乐乐乐乐应助yeah采纳,获得10
16秒前
18秒前
寒冷的依秋给寒冷的依秋的求助进行了留言
18秒前
18秒前
能干冰菱发布了新的文献求助10
18秒前
深情海秋完成签到,获得积分10
19秒前
Jason发布了新的文献求助10
19秒前
Cici发布了新的文献求助10
19秒前
MZ996完成签到,获得积分10
20秒前
20秒前
罐罐儿给孝顺的啤酒的求助进行了留言
22秒前
共享精神应助wltwb采纳,获得10
23秒前
希望天下0贩的0应助饼干采纳,获得10
24秒前
JamesPei应助拉长的远山采纳,获得10
25秒前
Wuhupilot完成签到,获得积分10
27秒前
沫荔完成签到 ,获得积分10
27秒前
Orange应助能干冰菱采纳,获得10
29秒前
李健应助Wuhupilot采纳,获得10
32秒前
34秒前
35秒前
35秒前
37秒前
莲枳榴莲完成签到,获得积分10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170303
求助须知:如何正确求助?哪些是违规求助? 3705934
关于积分的说明 11693477
捐赠科研通 3392063
什么是DOI,文献DOI怎么找? 1860430
邀请新用户注册赠送积分活动 920342
科研通“疑难数据库(出版商)”最低求助积分说明 832657